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Abstract. Process mining is a family of techniques that provide tools
for gaining insights from processes in, for example, business, industrial,
healthcare and administrative settings. Process discovery, as a field of
process mining, aims to give a process model that describes a process
given by an event log. A process model describes an underlying process
well if it contains all behavior relevant (fitness) and if it does not model
behavior that is not contained in the event log (precision). The Inductive
Miner (IM) family provides algorithms to find process models on complex
event logs efficiently and in an easy-to-understand process model repre-
sentation using process trees. Due to its characteristics, the IM family
is one of the state-of-the-art discovery algorithms and is implemented in
software of market-leading process mining vendors. Nevertheless, process
trees and in particular those discovered by the IM can have imprecise
parts. In this work, we combine existing work and present an approach
that replaces such parts with more precise parts while preserving fitness.
In addition, we demonstrate the frameworks applicability and utilization
by improving process trees discovered by the IM, using the IM itself. Fur-
ther, guarantees on the preservation of fitness and precision are given.
Our experiments clearly show that our techniques can be applied to real-
life event logs and that they lead to an improvement in precision.

Keywords: Process Tree · Event Data · Process Discovery · Process
Enhancement.

1 Introduction and Related Work

Information systems are widely used to collect organizational data related to pro-
cesses performed. This data are so-called event data, where an event corresponds
to an activity that is executed for a running instance of a process. By considering
a temporal relation between events, the events of each running instance can be
translated to a case and multiple cases can be combined into an event log. In
general, event data may contain further attributes that are not considered in this
work. Using event logs, one can use process mining to derive insights, value, and
actions. Process mining can be used, to evaluate and improve processes, e.g., in
terms of sustainability, fairness, productivity or resource consumption.
⋆ We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.
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Fig. 1: Overview of process tree projection & replacement (PtR) framework.

Process discovery is a subfield of process mining that aims to discover a pro-
cess model given an event log that can be taken as a starting point for further
analysis. In general, a process model describes the possible, not necessarily se-
quential, flow of activities in a process. Process models are evaluated against four
driving quality criteria. A process model is considered a good representation if
it represents all running instances of the process seen in the event log (fitness),
if it does not allow for running sequences unrelated to what is present in the
event log (precision), if it is easy to understand for a reader (simplicity), and if
it allows for running sequences not supported to what is seen in the event log
but what is likely to happen as well, i.e., if it is not overfitting (generalization).
For real-life event logs, in most cases it is not possible to satisfy all four quality
criteria with one model.

In this work, we focus on process trees as a class of process models. Due
to their block-structure, process trees are easy to understand. The Inductive
Miner (IM) [5], as the state-of-the-art algorithm for discovering process trees,
does not guarantee to return the most precise process tree given an event log.
A process tree that is not the most precise can be improved using the property
that blocks can be replaced with more precise blocks without having to consider
the entire tree, improving overall precision while maintaining fitness. Existing
theory is taken as a starting point for the approach presented and evaluated in
this work. The introduced process tree projection & replacement (PtR) frame-
work follows the procedure shown in Figure 1: Given as input an (intermediate)
process tree and an event log, first, imprecise structures are identified; second, if
necessary, language-preserving changes are made to separate the imprecise struc-
ture from other structures; third, the sub event log for the separated imprecise
structure is extracted; and fourth, it is used as input to discover a process tree
that replaces the previous imprecise structure. As an additional fifth step, a par-
titioning based on the activities contained in the separated process tree can be
applied at most once, if no improvement has occurred after the fourth step. This
would result in the second through fourth steps having to be performed again.
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Fig. 2: Comparative view before and after the application of the PtR framework to a
process tree discovered by the IM for the offer process filtered BPI12 event log.

An example for the application of the PtR framework is given in Figure 2
visualizing a process tree discovered by the IM on the BPI12 challenge log1 that
is filtered for the events related to the offer process. Here, the replaced part
of the process tree and the replacement are indicated. The application of our
framework improves the precision as it restricts the process tree such that each
creation of an offer is eventually followed by the offer being sent. Further, fitness
is preserved by the framework.

There are different process discovery algorithms existent. Region-based dis-
covery algorithms such as the ILP-Miner [10] or the Prime Miner [3] guarantee
a strong relation between the input event log and the returned process model
and therefore return process models with high precision in their class of process
models but are limited by their representational bias (e.g. no use of silent transi-
tions). Furthermore, region-based approaches tend to not handle noise and tend
to have a high runtime. Here, the Inductive Miner (IM) can be put into relation
as it achieves a good generalization and is computationally fast. Similar to the
Split Miner [2], the IM discovers process models solely using the directly-follows
relation between events in the event log and therefore reducing its complexity,
which may result in less precise models than models returned by region-based
techniques. Additionally, the Inductive Miner does not guarantee to discover the
most precise process tree for a given event log due to its greedy approach.

The algorithms and approaches proposed in this work are related to the field
of incremental process discovery [4] and to repair techniques in the field of pro-
cess enhancement [6]. In particular, the work by Schuster et al. [9] is the most
related to the ideas presented in this work. In their work, the authors aim to
incrementally discover and adapt process trees by including traces successively
into the behavior modeled. In this work, we use their proposed techniques for
tree modification and sublog identification. However, we extend their work by
giving a framework that tackles precision improvement in general and as we
give a formal reasoning on the guarantees of the techniques. Conceptually, the
framework presented is related to a similar work on imprecise structure replace-
ment in Petri nets [8]. As process trees can be translated into block-structured

1 All event logs used in this work are taken from https://data.4tu.nl/.
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Petri nets, the results of this work can be taken as starting point for refining the
imprecise structure replacement on Petri nets to also consider block structures.

The remainder of this work is structured as follows. Section 2 presents math-
ematical notations and concepts related to process mining used in this work.
Section 3 introduces the framework presented in this work in detail. Section 4
describes and proves the guarantees of the steps taken in our framework. In
Section 5, the framework is evaluated using process trees discovered on real-life
events logs with the Inductive Miner without noise filtering. Lastly, in Section 6,
this paper is concluded and outlook for future work is given.

2 Preliminaries

Basic Notations. A multiset, e.g., [a, b, b, a, b, c] = [a2, b3, c] can contain an el-
ement multiple times. We refer to the set of multisets over a set X as M(X).
While sets and multisets are unordered, sequences are ordered and can con-
tain an element multiple times, e.g., ⟨a, b, a, a, c⟩ ∈ {a, b, c}∗. We denote the
projection of a sequence σ ∈ X∗ on a subset of activities Y ⊆ X by σ↾Y . For
example, ⟨a, b, c, b, a⟩↾{a,c} = ⟨a, c, a⟩. For a tuple t = (x1, x2, . . . , xn) with n ∈ N
and i ∈ [1, n] we denote by πi the selector function selecting the i-th element
in a tuple, i.e., πi(t) = xi. For example, π3((a, b, c, d)) = c. We uplift all func-
tions applicable for single elements of a sequence to be applicable to the full
sequence, i.e., for a function f : X → Y and a sequence σ = ⟨x1, x2, . . . , xn⟩ we
write f(σ) = ⟨f(x1), f(x2), . . . , f(xn)⟩. Similarly, given a function applicable to
two elements of two sets X ⊆ X , Y ⊆ Y, we uplift the function to all combina-
tions of elements, i.e., for a function ◦ : X → Y we writeX◦Y =

⋃
x∈X,y∈Y {x◦y}.

For any two traces σ ∈ X∗, σ′ ∈ Y ∗ and for any two elements x ∈ X, y ∈ Y , we
denote the shuffle operation ⋄ : (X∗, Y ∗) → (X∪Y )∗ recursively with: σ⋄⟨⟩ = σ,
⟨⟩ ⋄ σ′ = σ′ and (σ · x) ⋄ (σ′ · y) = (((σ · x) ⋄ σ′) · ⟨y⟩) ∪ ((σ ⋄ (σ′ · y)) · ⟨x⟩), i.e.,
⟨a, b⟩ ⋄ ⟨c, d⟩ = {⟨a, b, c, d⟩, ⟨a, c, b, d⟩, ⟨a, c, d, b⟩, ⟨c, a, b, d⟩, ⟨c, a, d, b⟩, ⟨c, d, a, b⟩}.

Event Logs and Process Trees. The universe of activities (e.g. actions or oper-
ations) is denoted by A . A trace σ ∈ A ∗ is a finite sequence of activities. The
universe of traces is denoted by T . A log L ∈ M(A ∗) is a multiset of traces. We
represent the behavior described by an event log using process trees. A process
tree is an hierarchical process model. Every leaf of a process tree is labeled with
an activity, while every other node is labeled with an operator ⊕ = {→,∧,×,⟲}
such as the sequential operator →, the parallel operator ∧, the exclusive choice
operator × and the loop operator ⟲. Every operator node can have an arbitrary,
non-empty set of children except for the loop operator ⟲ that has two children
exactly. For the → and ⟲ operator, the order of children is relevant and taken
into account by totally ordering the edges in the process tree. A so-called silent
activity is labeled with the designated silent activity label τ ̸∈ A . Further we
describe process trees as follows.

Definition 1 (Process Tree). A process tree is a directed acyclic graph defined
as a quintuplet T = (V,E,A, l, r) , where V is a finite set of nodes, E ⊆ V × V
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is a totally ordered set of edges between nodes, A ⊆ A with τ ̸∈ A is a set of
non-silent activity labels, l : V → A ∪ {τ} ∪ ⊕ for ⊕ = {→,∧,×,⟲}, and r is
the root node of the process tree. Further, the following holds:

– T = ({n}, ∅, {a}, {(n, a)}, n) with a ∈ A ∪ {τ} is a process tree
– given k ≥ 1 distinct process trees T1, T2, . . . , Tk with Tl = (Vl, El, Al, ll, rl)

for l ∈ [1, k], i.e., ∀i,j∈[1,k] : Vi ∪ Vj ̸= ∅ ⇒ i = j then T = (V,E,A, l, r) is a
process tree for which:
• V =

⋃
i∈[1,k] Vi ∪ {r}

• E =
⋃

i∈[1,k](Ei ∪ {(r, ri)})
• A =

⋃
i∈[1,k] Ai

• l =
⋃

i∈[1,k] li ∪ {(r, op) | op ∈ ⊕}
where (op = ⟲ ⇒ k = 2) and ∀i∈[1,k] : r ̸∈ Vi holds.

A process tree given can be represented using a graphical notation, as shown
in Figure 3. Further, a process tree can also be represented textually, e.g.,
Tp =̂ →(⟲(∧(a, b, c), τ),×(c, τ), d) for the process tree in Figure 3. For a process
tree T = (V,E,A, l, r) and a node n ∈ V given, we denote the subtree rooted
in n as Tn = (Vn, En, An, ln, rn), i.e., rn = n holds. Further, we define a child
function chT(n) returning the children of n as a sequence according to the order
of edges E by chT(n) = ⟨n1, n2, . . . , nk⟩, s.t., ∀(n,no)∈E : no ∈ {n1, n2, . . . , nk}.
For example, given the node n2.0 ∈ Vp of the process tree Tp shown in Figure 3,
we conclude the subtree Tn2.0 rooted in n2.0 to be Tn2.0 =̂ ∧(a, b, c) and its
children chTp(n2.0) to be chTp(n2.0) = {n3.0, n3.1, n3.2}.

Each process tree has a non-empty set of valid sequences of node visits, so-
called running sequences. A running sequence is defined recursively as follows.

Definition 2 (Process Tree Running Sequences). Let T = (V,E,A, l, r)
be a process tree. We define its running sequences ΩT ⊆ V × (A ∪ {τ, op, cl})∗
with op(en), cl(ose) ̸∈ A recursively as:

– ΩT = {⟨(r, l(r))⟩} iff r is a leaf node, i.e., E = ∅ holds,
– ΩT = {⟨(r, op) ·ΩTn1

·ΩTn2
· . . . ·ΩTnk

· (r, cl)⟩} for k ≥ 1, chT(r) =
⟨n1, n2, . . . , nk⟩ iff r is labeled as sequential node, i.e., l(r) = → holds,

– ΩT = {⟨(r, op) ·
⋃

i∈[1,k] ΩTni
· (r, cl)⟩} for k ≥ 1, chT(r) = ⟨n1, n2, . . . , nk⟩

iff r is labeled as exclusive choice node, i.e., l(r) = × holds,
– ΩT = {⟨(r, op) · (ΩTn1

⋄ΩTn2
⋄ . . . ⋄ΩTnk

) · (r, cl)⟩} for k ≥ 1, chT(r) =
⟨n1, n2, . . . , nk⟩ iff r is labeled as parallel node, i.e., l(r) = ∧ holds,
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– ΩT = {⟨(r, op) · σ1 · σ′
1 · σ2 · σ′

2 . . . · σ′
m−1 · σm · (r, cl)⟩ | m ∈ N∧ σm ∈ ΩTn1

∧
∀i∈[1,m−1] : σi ∈ ΩTn1

∧ σ′
i ∈ ΩTn2

} for chT(r) = ⟨n1, n2⟩ iff r is labeled as
loop node, i.e., l(r) = ⟲ holds,

Given all possible running sequences existing in a tree, we can conclude the
language of the process tree L(T) by considering the occurrences of the leaves
with non-silent activities in the running sequence.

Definition 3 (Process Tree Language). Let T = (V,E,A, l, r) be a process
tree. We define the corresponding language by L(T) = {(π2(ω))↾A | ω ∈ ΩT}.

For example, the running sequences of the subprocess tree Tn1.1
=̂ ×(c, τ)

of Tp shown in Figure 3 are ΩTn1.1
= {⟨(n1.1, op), (n2.2, c), (n1.1, cl)⟩, ⟨(n1.1, op),

(n2.2, τ), (n1.1, cl)⟩} and the process tree language is L(Tn1.1
) = {⟨c⟩, ⟨⟩}. We

say that a running sequence ω is corresponding to a trace σ if the occurrences
of the leaves labeled with an activity from set of non-silent activities Av match
with the trace σ, i.e., if (π2(ω))↾Av

= σ holds. For a running sequence given, we
can identify all subtraces modeled by a subprocess tree. The union of all such
subtraces corresponds to a sub event log of the subprocess tree.

Definition 4 (Sub Event Log of a Subprocess Tree (cf. [9])). Let
T = (V,E,A, l, r) be a process tree and Ts = (Vs, Es, As, ls, rs) be a subtree
of T, i.e., rs ∈ V holds. Further, let ω be a running sequence on T. Then we
define the sub event log ω↾Ts

∈ M(L(Ts)) of the subprocess tree Ts considering
the running sequence ω = ⟨a1, a2, . . . , an⟩ with n ∈ N as:

ω↾Ts
= [π2(⟨ai, ai+1, . . . , aj⟩↾(Vs×As)) | i ∈ [1, n− 1] ∧ j ∈ [i+ 1, n] ∧

∀k∈[i,j] : (ak = (Ts, op) ⇔ k = i ∧ ak = (Ts, cl) ⇔ k = j)].

In this work, we only consider nodes for replacement that have a common
father node that is labeled with the parallel operator, i.e., we only consider con-
current (sub-)process trees to be replaced. Further, as we want to keep precise
(sub-)process trees which are concurrent as well, we may not always want to
find the sub event log of all concurrent (sub-)process trees, but rather the sub
event log of a partition of them. Therefore, we present a technique to separate a
partition of (sub-)process trees from their siblings. This is achieved using expan-
sion rules that lower the partition while leaving their siblings unchanged. This
preserves the language of the process tree, as we show in Section 4.

Definition 5 (Lowering a Set of Children of a ∧-Rooted Tree (cf. [9])).
Given T = (V,E,A, l, r) a process tree and Tn a subprocess tree with root n ∈ V,
chT(n) = ⟨cn1, cn2, . . . , cnj⟩ for j ∈ N and l(n) = ∧. Then we can add a

node nlow, where Vc = chT ′
(nlow) ⊆ chT(n) holds, while preserving the language

of the tree T resulting in a process tree T ′ = (V ′, E′, A, l′, r) where:

V ′ = V ∪ {nlow}
E′ = (E \ {(n, cn) | cn ∈ Vc}) ∪ {(n, nlow)} ∪ {(nlow, cn) | cn ∈ Vc}
l′ = l ∪ {(nlow,∧)}.
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Given the process tree Tp =̂ →(⟲(∧(a, b, c), τ),×(c, τ), d) shown in Figure 3,
we obtain Tp =̂ →(⟲(∧(b,∧(a, c)), τ),×(c, τ), d) by lowering the set {n3.0, n3.2}.
Last, we give a comparative view on fitness and precision between process trees.

Definition 6 (Fitness and Precision Comparison). Let L be an event log
and T, T ′ be two process trees. T ′ is at least as fitting as T considering the event
log L, if every trace σ ∈ L that is in the language of T is also in the language
of T ′, i.e., σ ∈ L(T) ⇒ σ ∈ L(T ′). T ′ is at least as precise as T, if every
trace σ ∈ T that is in the language of T ′ is also in the language of T, i.e.,
σ ∈ L(T ′) ⇒ σ ∈ L(T). T ′ is more precise than T, if there is an additional trace
σ′ ∈ T \ L that is in the language of T but not of T ′, i.e., σ′ ∈ L(T)∧σ′ ̸∈ L(T ′).

3 Process Tree Projection & Replacement Framework

The Inductive Miner analyzes a log and splits the log greedily into two sublogs
by projecting the current log onto two distinct sets of activities following defined
rules and fall-throughs. For each log analysis, a new node is inserted into the
result process tree. Here, the algorithm can be prone to find imprecise subtrees
as it does not use look-ahead. An example of such an imprecise subtree is a
tree in which at least two activities can be replayed in parallel and arbitrarily
often, i.e., in the process tree ∧(×(τ,⟲(a, τ)), b,×(⟲(c, τ))) this is the case for
the subprocess trees containing activities a and c. As this kind of subprocess
trees restricts the behavior only marginally, we consider such structures as most
promising candidates for replacement and precision improvement.

Our presented approach is not limited to process trees discovered by the
Inductive Miner as other discovery algorithms may also discover process trees
with imprecise structures. However, given that there are no other known discov-
ery algorithm for process trees, and for reasons of comprehensibility, we restrict
ourselves to the Inductive Miner without noise filtering. In the following, we
give a short overview of the Process Tree Projection & Replacement Framework
(PtR framework) presented and used in this work.

PtR framework. We follow the structure shown in Figure 1 consisting of the
following steps recursively applied to an event log L and a process tree T:

∧n0.0

×n1.3

⟲

n2.7

τ

n3.7

c

n3.6

τ

n2.6

×n1.2

⟲
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⟲
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Tblue =̂ ∧(×(τ,⟲(a, τ)),×(τ,⟲(d, τ)) Tred =̂ ∧(×(τ,⟲(b, τ)),×(τ,⟲(c, τ))
Lb = [⟨⟩2, ⟨a, d, a, d⟩2] Lr = [⟨⟩, ⟨b⟩, ⟨b, c, c, b, c, c⟩, ⟨b, c, c⟩]

Fig. 4: Process tree T1 discovered by the IM on the event log L1. Tblue and Tred show
two partitions and their corresponding lowered subtrees resulting from Step I and II.
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Step I - Identification: Identifying imprecise structures as candidates, e.g.,
multiple flower structures, choice constructs modeling optionality or loop con-
structs which occur in parallel can be considered.
Step II - Modification: Applying expansion rules to separate the imprecise
structures as subprocess trees according to Definition 5, e.g., we lower a set of
parallel nodes that are considered as imprecise candidates by adding another
parallel node that is a parent of the candidate nodes, while their former parent
is the parent of the new node.
Step III - Sub Event Log Extraction: Extracting and uniting all sub event
log of the separated subprocess tree, which are obtained according to Defini-
tion 4. In case that a running sequence, relevant for the sub event log extraction,
does not exist, we obtain a running sequence by using alignments [1].
Step IV - Discovery and Block Replacement: Discovering a replacing pro-
cess tree where each trace in the sub event log is in its language and potentially
replacing the separated structure if the replacement is more precise.
Step V - Partitioning (Fall-Through): If precision is not improved, a fall-
through is applied that bi-partitions the children of the separated structure and
considers the partitions as new candidates for improval. For each such candidate,
the Steps II-IV of the framework are applied.

As an example, we consider T1 shown in Figure 4 which is discovered by the
Inductive Miner on the log L1 = [⟨a, d, a, d⟩, ⟨b⟩, ⟨b, c, c, b, c, c⟩, ⟨b, a, d, c, a, c, d⟩].
Here, the potential discovery of imprecise structures becomes more apparent as
the language L(T1) = {a, b, c, d}∗ of the example process tree T1 is imprecise
considering the input event log L1. Here, the PtR framework is applicable to
the process tree T1 and the log L1. This results in the process tree T ′

1 shown in
Figure 5. In detail, the following (intermediate) results are produced:
Step I: The nodes n1.0, n1.1, n1.2 and n1.3 are in parallel and flower structures
and are therefore identified as a candidate for replacement together.
Step II-V: Applying Steps II-III results in the input event log L1 for which
we rediscover the identical process tree in Step IV. Conclusively, we are in Step
V as fall-through and thus bi-partition the set of nodes. For the sake of com-
prehensibility, we follow the optimal partitioning to be applied directly in this

∧n0.0
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→
n3.2
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Tblue =̂ ∧(×(τ,⟲(a, τ)),
×(τ,⟲(d, τ)))

Tred =̂ ∧(×(τ,⟲(b, τ)),×(τ,⟲(c, τ))

Lb = [⟨⟩2, ⟨a, d, a, d⟩2]

Lr = [⟨⟩, ⟨b⟩, ⟨b, c, c, b, c, c⟩, ⟨b, c, c⟩]

Fig. 5: Process tree T ′
1 resulting from applying the PtR framework to event log L1 and

the processs tree T1. The logs Lb and Lr correspond to the logs identified by Step III.
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example. Thus, the partitioning results in a blue set of nodes nb = {n1.0, n1.1}
and a red set of nodes nr = {n1.2, n1.3}, both being hightlighted in Figure 4 and
considered as new candidates for replacement.
Step II: We modify T1 by applying the expansion rules to partition nb and
partition nr, resulting in a modified process tree Ti =̂ ∧ (Tblue, Tred) with
Tblue =̂ ∧(×(τ,⟲ (a, τ)),×(τ,⟲(d, τ)) and Tred =̂ ∧(×(τ,⟲(b, τ)),×(τ,⟲(c, τ)).
Step III: Given Ti, we can extract and unite all sub event logs by projecting
on both subtrees Tblue and Tred resulting in Lblue = L1↾Tblue

= [⟨⟩2, ⟨a, d, a, d⟩2]
and Lred = L1↾Tred

= [⟨⟩, ⟨b⟩, ⟨b, c, c, b, c, c⟩, ⟨b, c, c⟩].
Step IV: Given the extracted logs, we rediscover process trees using the Induc-
tive Miner on the logs Lblue and Lred resulting in T ′

blue =̂ ×(τ,⟲(→(a, d), τ))
and T ′

red =̂ ×(τ,⟲(→(b,×(τ,⟲(c, τ))), τ)) which replace Tblue and Tred in the
process tree Ti resulting in T ′

1 =̂ ∧ (T ′
blue, T

′
red) shown in Figure 5.

Here, fitness is preserved as the log L1 remains replayable, while precision
for T ′

1 is improved since, for example, the trace ⟨c⟩ has a running sequence for
the process tree T1 but not for T ′

1, i.e., ⟨c⟩ ∈ L(T1) ∧ ⟨c⟩ ̸∈ L(T ′
1) holds.

4 Guarantees of the Framework

In this section, we discuss the guarantees of the methods proposed. For this pur-
pose, we show that all steps taken do neither reduce fitness nor precision. We
start with Step II where we distinguish two cases. In the first case, we do not
have to lower a set of nodes such that the input tree remains unchanged and
thus the fitness and precision are preserved. In the second case, we lower a (par-
titioned) set of children Nc = {cn′

1, cn
′
2, . . . , cn

′
j} ⊆ chT(r) = {cn1, cn2, . . . , cnn}

with j, n ∈ N of a (sub-)process tree T = (V,E,A, l, r). Initially, from Definition 2
and 3, we can conclude that the process tree language of the tree T is L(T) =
{L(cn1) ⋄ L(cn2) ⋄ . . . ⋄ L(cnn)}. Lowering the set of children Nc results in a
node nlow being added such that we obtain a process tree T ′ = (V ′, E′, A, l′, r)
according to Definition 5. By construction, L(Tnlow

) = {cn′
1 ⋄ cn′

2 ⋄ . . . ⋄ cn′
j}

and L(T ′) = {L(nlow) ⋄ L(cn1) ⋄ L(cn2) ⋄ . . . ⋄ L(cnn) | ∀i∈[1,n] : cni ̸∈ Nc} hold,
resulting in L(T) = L(T ′) due to the shuffle operator being associative. Conclu-
sively, lowering a set of children does not change the language of a process tree
and in particular does not reduce fitness nor precision.

Next, we want to show that applying Steps III and IV does neither reduce
fitness nor precision. Towards fitness, we show that each part of all traces re-
played in the replaced process tree remains replayable in the replacing process
tree. We follow the following line of argument. For each trace a running sequence
(possibly derived from an alignment) can be computed. Given a set of running
sequences, we can directly determine their language on the replaced process tree.
This corresponds to the traces that result from the occurrences of the leaves of
the replaced process tree between the replaced process tree’s opening and closing
in the running sequence. Taking into account that such a language for only run-
ning sequence given, is identical to the sub event log computation, we conclude
the language of the replaced process tree to be equal to the extraction and union



10 C. Rennert, W. M. P. van der Aalst

Table 1: Results of our framework for real-life logs, for which our algorithm
and ETCAll-precision are computable in alotted time and space.

Log
ETCAll-precision

Initial PtR Difference Percentage

BPI12 - O events 0.457 0.612 0.155 33.9%
BPI12 - W events 0.431 0.496 0.065 15.1%
BPI13 - closed problems 0.510 0.612 0.102 20.0%
BPI20 - Domestic Declarations 0.216 0.288 0.072 33.3%
BPI20 - Request for Payment 0.236 0.273 0.037 15.7%
Sepsis Cases 0.227 0.234 0.007 3.1%

of all sub event logs as applied in Step III. The resulting log is the basis for the
discovery of the replacing process tree and therefore the lower bound of its mod-
eled language (as required in Step IV). Thus, the parts of the running sequences
of the event log replayed on the replaced subprocess tree are replayable on the
replacing subprocess tree. In conclusion, all traces have an alignment at least as
good as before - in particular, fitting traces remain replayable.

Towards precision, we can trivially conclude an overall precision preservation
as we do a precision comparison between the replacing and the replaced process
tree in Step IV assuring that we do not reduce precision. Such a comparison
would be redundant if the discovery algorithm used guarantees that it discovers
a process tree whose language is contained in the log obtained by Step III. This
is a result of the log obtained by Step III being a subset of the language of
the replaced process tree. This property holds as the log obtained by Step III is
computed using the running sequences obtained from the input log. Conclusively,
the replacing process tree would not allow for more behavior than the replaced
process tree resulting in a preservation of precision.

Taking all those arguments into consideration and that further Step I and
Step V do not alter the input process tree, there is no step in our framework that
reduces either fitness or precision. Thus, both are preserved using our framework.

5 Evaluation

In this section, we evaluate the PtR framework proposed in Section 3 with real-
life event logs. We implemented a plugin called “Process Tree Projection &
Replacement Framework (PtR framework)” in ProM2 that applies the framework
automatically to an input event log and its corresponding process tree.

For our evaluation, we want to quantitatively evaluate precision by using
ETCAll-precision [7]. We consider pairs of real-life event logs, namely the BPI
challenge logs from 2011-2020, the Sepsis event log and the RTFM event logs, and
their corresponding discovered process trees discovered by the Inductive Miner
without noise filtering. Noise filtering is not used, since, this way, imprecise

2 Available at https://promtools.org/.
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structures are obtained on less complex event logs. Further, ETCAll-precision
computation becomes more probable to be feasible. As imprecise structures we
restrict ourselves to flower and loop constructs. In Table 1, we report the preci-
sion before and after the application of the PtR framework for only those pairs,
where both the running sequence computation of the input event log (Step III in
the framework) and the ETC-precision computation of the evaluation finish in
allotted time and space. Further, we report the difference of the precision values
and its relative improvement given by the percentage of the increasement.

The other pairs of event logs and their process trees contain three pairs
(BPI12 - application, BPI13 - open, RTFM) for which no imprecise structure is
identifiable, one pair (BPI13 - open) for which no improvement was achieved,
one pair (BPI13 - incidents) for which we improve the input process tree but
ETCAll precision computation is not feasible within allotted time, and for the
process tree of all the other pairs imprecise structures are identified, but running
sequence computation is not feasible.

Our results show, that for most real-life event logs an imprecise structure
is discovered by the Inductive Miner. For all event logs listed in Table 1 but
one, we improve precision significantly by at least 15% compared to the initial
precision value. This qualitative improvement clearly shows the applicability and
relevance of our approach and motivates further research regarding improvement
of running times, which is not the focus of this work.

Given our experiments we suggest to improve the IM by optimizing the way
it applies certain fall-throughs. Consider the discovered and replaced structure
in Figure 2. Here, the IM first evaluates two sublogs, one containing only the
activity “O CREATED” and the other containing only the activity “O SENT”.
For both sublogs none of the four standard cuts is found and thus fall-throughs
(mainly the activity-concurrent fall-through) are applied greedily. Note that the
order of fall-through cuts matters and can result in a non-optimal set of subtrees.
We propose to re-evaluate sets of such imprecise subtrees based on which we
construct one sublog that allows to discover one more precise subprocess tree.

6 Conclusion and Future Work

In this work, we introduce a framework to improve precision by replacing impre-
cise structures in process trees. It gives guarantees on the preservation of fitness
and precision, and therefore never decreases the quality of its input process tree.
Further, if we use the IM within our framework, we inherit IM’s desirable fea-
tures such as soundness and fast computation of process models. Our work is
supported by experiments on process trees discovered by the well-known In-
ductive Miner without noise filtering for which we use the IM itself to replace
imprecise structures. Our experiments show that imprecise structures occur for
most real-life logs available. For six real-life event logs and their corresponding
process trees, we improve precision. This indicates the relevance of our work.

However, since running sequences must be computed for all traces before
applying the IM, there are inputs for which our implementation did not run
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within the time and space allotted. Therefore, either efficiency can be improved
or could result in being a starting point for adaptations within the IM itself. For
the latter, the relevant sub event logs would already exist within the IM and
could be used as input for further refinement.

Otherwise, the framework presented in this paper can be evaluated for the IM
with noise filtering. Here, the results can be taken as starting point for research
on the ranking of desired alignments when computing the sub event log, as the
quality of the discovered replacing process tree is strongly related to the sub
event log given. Further, heuristics for the identification of promising imprecise
structures and for checking how and whether to partition potential imprecise
structures are missing.
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