
Event Knowledge Graphs for Auditing: A Case Study

Eva L. Klijn1[0000−0001−9270−4774], Dennis Preuss2, Lulzim Imeri2, Florin Baumann2,
Felix Mannhardt1[0000−0003−1733−777X], and Dirk Fahland1[0000−0002−1993−9363]

1 Eindhoven University of Technology, the Netherlands
{e.l.klijn,f.mannhardt,d.fahland}@tue.nl

2 Ernst & Young AG, Switzerland
{dennis.preuss,lulzim.imeri,florin.baumann}@ch.ey.com

Abstract. Due to its potential benefits, process mining has become more and
more embedded in financial auditing as an analysis technique to support the audi-
tor in their assessment of the design and operating effectiveness of internal con-
trols executed in financially relevant processes. However, standard process min-
ing solutions for audit are developed under the pretense of a single case notion.
As a result, an auditor is presented with models and data visualizations of the pro-
cess that do not accurately reflect the underlying relationship between accounting
and other relevant objects in the process, posing challenges for the auditor in ob-
taining a precise understanding of the process and related controls. In this case
study together with EY, we aim to understand requirements for improving the
application of process mining in audit. After first inventorizing the current lim-
itations, we explore on a real-life audit use case provided by EY the benefits of
graph-based event data representation using an event knowledge graph, especially
considering accounting related objects and events. Discussing these results with
auditing experts at EY revealed insights and requirements for a process mining
analysis in the context of auditing not documented in the literature before.

Keywords: financial auditing · multiple objects · knowledge graph · querying

1 Introduction

An organization’s published financial statements are main trusted sources for economies
and capital markets. Many stakeholder rely in their decision making upon the informa-
tion published [14]. To provide assurance that the financial statements of an organiza-
tion represent a true and fair view, a financial audit is performed. Using process mining
(PM) on recorded event data in such audit has been shown to be useful in supporting
an auditor in assessing the design and operating effectiveness of companies internal
controls, as it provides a comprehensive and faithful view of processes [9].

The application of process mining for auditing and specifically financial auditing
has been researched [7–9,12–14]. Using existing process mining tools forces the auditor
into an undesired trade-off decision early in the analysis when picking a case identifier
to build the event log [7], e.g., in a purchasing process, the case could be chosen at the
higher level of purchase order headers or each individual line item of the purchase order.
Either choice has drawbacks [7] as flattening the relational source data into a sequen-
tial event log causes convergence (event duplication) and divergence (false behavioral



2 E.L. Klijn et al.

dependencies) [1] that complicate the audit. Werner et al. [12] avoid the trade-offs and
drawbacks by not flattening the data under a particular case, but directly constructing
from data attributes a graph of related events for financial auditing. However, their re-
sulting graph structure cannot be directly used by process mining solutions. Alternative,
graph- and object-centric event data representations have been proposed [1, 4] but their
application to auditing in practice has not yet been researched.

This paper reports on a case study conducted together with Ernst & Young (EY)
with the objective of exploring the challenges of transitioning from a classical pro-
cess mining analysis to a graph-based process mining analysis for financial auditing.
We selected purchase-to-pay (P2P) as standard process and were provided with an
anonymized, non-client attributed data set and process description from a real-life case
(Sect. 2). Reflecting on the current use of sequential event logs, auditing experts from
EY confirmed the known trade-offs and drawbacks [7] but also raised analytical chal-
lenges that future process mining solutions in audit have to overcome, specifically the
need for flexible multi-perspective views on events and objects at different granular-
ity levels is not fulfilled (Sect. 3). To explore whether graph-based event data models
and visualizations meet these challenges, we transformed the ERP data of the P2P case
into an Event Knowledge Graph (EKG) [4, 5] and designed a prototype visualization
for auditing in an open-source graph database and visualization software (Sect. 4). We
confronted the EY auditing experts with this visualization to obtain feedback whether
this representation avoided the trade-offs and addressed the challenges through a more
realistic and accurate view of the process from an auditing perspective (Sect. 5). We
found that the graph, indeed, makes it easier for auditors to understand how business
and accounting objects are interrelated and whether controls are violated. It provides the
required flexibility to subset the event data for different objects and, therefore, switch
between different perspectives. We reflect on the implications in Sect. 6.

2 Context and Use Case

We first recall financial auditing and its use case in process mining (Sect. 2.1) after
which we introduce our use case and the ERP source data (Sect. 2.2).

2.1 Process Mining for Financial Auditing

Financial auditing is the process of examining financial statements of an organization
with the purpose of providing reasonable assurance that the statements represent a true
and fair view [9]. Financial audits are conducted by external auditors; larger organiza-
tions also have an internal audit department that assesses the broad scope of functioning
of the organization, e.g., its operations or corporate governance.

Due to its potential benefits, process mining (PM) has become more and more em-
bedded in financial auditing as an analysis technique to support the external auditor in
their assessment of the design and operating effectiveness of internal controls [14]. This
procedure, shaped by the “International Standards on Auditing” (ISA), consists of four
main phases: (1) understanding the entity, e.g., the organization, and its environment,



Event Knowledge Graphs for Auditing: A Case Study 3

including its internal control (ISA 315), (2) identifying and assessing the risk of ma-
terial misstatement (ISA 315), (3) auditor’s responses to assessed risks (ISA 330), and
(4) forming an opinion and reporting on financial statements (ISA 700) [14].

In this study, we aim to understand requirements for improving the application of
PM in the first phase of an external audit. Here, an auditor has to understand the entity
and its environment, including the entity’s internal control with the aim to asses the
design and operating effectiveness of a control. In general, a control should prevent the
risk that a certain type of behavior or transaction results in material financial misstate-
ments; an example of a control is the approval of a purchase order each time a change
is made to it. The primary benefit of PM in this phase is that it can produce more com-
prehensive models and data visualizations of the actual process which allows an auditor
to, instead of a sample, visualize everything from the process. If the model/data visual-
ization is “faithful” to reality, the auditor can inspect it to assess whether implemented
controls are present or missing, i.e., are designed effectively [9]. If this is the case, i.e.,
if the auditor concludes the control prevents a significant risk, they test the operating
effectiveness of the control. The typical standard of a mined process model in industrial
PM solutions is a directly follows graph (DFG) which shows how the different steps in
the process, e.g., creation of a PO or creation of an invoice, are sequenced.

2.2 Process, Controls, and Source Data in the Case Study

To assess the properties of current and other data models for an auditor in concluding
the effectiveness of a control, EY provided us with an anonymized, non-client attributed
data set representing a real-life purchase-to-pay process (P2P). We describe the process,
auditing controls, and source data considered in the case study.

Process. A purchase-to-pay (P2P) process is a standard operational process aimed at
procuring goods or services for an organization. The specific process handles documents
of five different types that are created and updated throughout its execution.

The process starts with the creation of a purchase order (PO), a document contain-
ing one or multiple purchase order line items (POLs) detailing the goods or services
being procured. From a data and auditing perspective, a PO and POL are considered
two distinct types of entities; the PO stores information about, e.g., the vendor, pur-
chasing organization or the total PO value and the POL stores item specific informa-
tion, e.g., its quantity and price. Once created, the PO is sent to the supplier. When
(part of) the goods and/or services, i.e., a number of POLs requested in the PO, are
delivered, a goods receipt (GR) is created: a document stating that the goods entered
the company’s warehouse. Receiving and recording a supplier invoice continues the
process which generates an invoice document (INV): a document in the ERP system
recording the financial transaction which serves as a request for payment. Receipt of
goods and invoicing both lead to an increase in the company’s inventory and liabilities
it has towards its suppliers and, as such, both a goods receipt and invoice relate to an
accounting document (AD). In the end, the accounting document related to the invoice
is settled through another accounting document, which is typically the payment to the
supplier.



4 E.L. Klijn et al.

Object tables

Log tables

Fig. 1. Simplified database schema from source system provided by EY. Note: the change log
item table has an n:1 relationship to each object table (omitted for simplicity).

Control. A key control that is assessed in the first phase of the audit for its operating
effectiveness is the “PO approval”, which is in place to prevent the risk of unauthorized
procurement leading to potential paying of unauthorized assets or expenses. During the
audit, auditors assess whether the control is designed in a way which addresses the
above mentioned business risk. For example, if the POL quantity or price is changed
then effective control design would trigger re-approval of the entire PO, as the total
value of the PO changed. Similar behavior is expected if new procurements, i.e., new
POLs, are added to an existing PO.

Source Data. Operational processes under audit, like the P2P process of our use case,
track executions through records in a relational database (RDB). Its documents are
stored in uniquely identifiable information records that are interrelated via 1:1, 1:n or
n:m relations [11]. Fig. 1 shows the (simplified) data schema of the P2P process in
our case study defining header and item-level objects for PO and POL (1:n relation),
INV and INV item (1:n), AD and AD item (1:n). While PO refers to INV on the line
item-level (1:n), INV refers to AD on the header level (n:1). Each creation or update
of an object record is recorded as a timestamped event in a respective change log ta-
ble (header and item-level). Each change log item table holds the object type as well
as the object key that refers to the object that was updated (n:1, not shown in Fig.1).
The change log header table holds various information like the timestamp and user who
performed the change.

3 Challenges of Event Data Representation in Auditing

We reviewed the challenges of extracting event logs from an RDB for a PM-based
audit with experts from EY. We confirm trade-offs reported previously, distill resulting
analytical challenges, and discuss data models to overcome them.

Event Log Extraction for PM-Based Audit: Choices and Implications In current
PM-based audit practice, data from an RDB, e.g., of a P2P process, is first extracted into
a sequential event log based on a specific object chosen as case identifier. Technically,
all events (indirectly) related to the case identifier are grouped into a trace [2, 5]. The



Event Knowledge Graphs for Auditing: A Case Study 5

choice of case identifier depends on the analysis goal and the cardinality of the relations
between object in the process [10]. However, each of the choices has known drawbacks
for auditing practice [7] that were confirmed by EY’s experts.

Current audit practice prefers an item-level document as case identifier to construct
the event log, e.g., the POL in our P2P data. The trace of one POL contains all event
records of any (relevant) change table that is related (via other objects) to the POL
record [6]. Any event related to multiple POLs is duplicated (into each corresponding
trace), known as convergence [1]. In such logs, a single payment event (from an AD
header change table, Fig. 1) can be extracted for multiple POLs via two 1:n relation-
ships: the data states more payments than actually happened.

Choosing a header-level object as case identifier, e.g., AD header, would in princi-
ple allow to analyze behavior on a document level, e.g., an entire payment. However,
the resulting log orders events of unrelated objects into a sequence resulting in false be-
havioral dependencies, known as divergence [1]: it would become impossible to derive
from the process graph which AD-related events relate to which POL [5].

Finally, the large amount of data kept within a single RDB of a large enterprise re-
quires pre-filtering during extraction, e.g., extract only data of the company within the
audit scope. The challenge for an auditor lies in the organization of change logs by ob-
ject type rather than by company. To ease this, the change log is pre-filtered to changes
of relevant objects within a set time frame while object-related tables are filtered based
on organizational attributes.

Analytical challenges. The choices in log extraction causes the following analytical
challenges that were detailed by the auditing experts, resulting in requirements for fu-
ture PM-based solutions.

Auditors in practice are not involved in the choices and transformations during event
log extraction. They perceive the directly-follows graph (DFG) computed from the log
as the truth and are not aware of implications of convergence and divergence. This
requires extensive expertise to overcome leading to longer onboarding times for using
PM in audit. Also, the more decisions are made in the data transformation, the more has
to be explained about the audit result to the client. Requirement: reduce the decision
made in the data transformation.

However, the main challenges of using a single-case DFG in audit are related to
the performing of the audit itself. First, an auditor needs to validate the process graph,
which, in practice, is often done by reconciling the figures from the accounting related
events back to the balance sheet and income statement movements. However, because
of the POL perspective DFG and the fact that often multiple invoices related to POLs are
settled through the same payment (i.e., the accounting relevant event), the accounting
relevant events, along with the payments values, are duplicated for each of the POLs.
As a result, it is more difficult for the auditor to reconcile, as there are now multiple
events with the same payment value, but only a single entry in the accounting ledger.
Requirement: Having no convergence/divergence would simplify things for the auditor.

Second, to test the effectiveness of controls, the auditor needs to understand how the
process perspective is related to the accounting perspective, in particular, how a process
activity can impact objects and the effect this has on the control. (1) This involves in-
ferring from the activities how the process flows between the different business objects



6 E.L. Klijn et al.

(PO, POL, INV, GR) and accounting objects (AD). These accounting objects are the fi-
nancial transactions leading to the financial statements. The auditor can only assess the
financial impact of an event if they understand the object that the event was involved
in. A DFG only shows the flows between the different activities related to the objects
but not the objects themselves, nor how these are structurally related. Requirement: Au-
ditor needs to more easily access the objects related to events. (2) This also involves
understanding at which level of granularity (line-item level or header level), a particular
attribute is located and how to relate them correctly, e.g., relating prices in a POL (line-
item) to price in AD (header). Requirement: The auditor needs flexibility in relating
objects of different levels. (3) Different controls concern different levels of granularity.
Requirement: The auditor needs flexibility in changing perspectives on the data.

Overall, the inherent limitations of flattening event data under a single case identifier
forces auditors into undesirable trade-offs and complex decisions. The preference of
auditing experts is to avoid these trade-offs altogether and to work with the data “as-is”
(no duplication, no false behavioral dependencies) and to view it from different angles
(any document, header or item level).

Graph-Based Data Formats in Auditing The problem of convergence and divergence
in the context of auditing and its effect on event data representation to the auditor has
been addressed before in other works [12,13]. In [13] and later more extensively in [12],
the authors proposed a discovery method that exploits the accounting data’s structural
dependencies by modeling the data as a graph. This enabled to disentangle the control
flow on a process instance level providing a more realistic and accurate view of the
process from an accounting perspective. However, the graph concepts of [12] are not
compatible with standard PM concepts [4].

These and other ideas of a graph-based model for event data [3, 12, 13] were gen-
eralized into the model of event knowledge graphs (EKGs) [4]. An event knowledge
graph is a graph-based data model supported by graph DB systems. It models events
and objects in a process as nodes and the relationships between them as edges. Each
node or edge is typed with a label (nodes can be typed with multiple labels). Properties
(attribute-value pairs) describe a node or edge further. An event is related to any number
of objects it operated on by an edge with label corr. Two events related to same object
that directly follow each other in time are connected by a df -edge (directly-follows).
Two objects can be related to each other through structural relationships. Fig. 5 shows
an EKG (events are shown orange, df-edges blue, corr edges orange). An EKG can be
constructed automatically from event tables [4] and allow advanced query-based anal-
ysis and visualization of event data over multiple related data objects [5]. Compared to
other object-centric data models, e.g., [1], an EKG allows to model behavioral depen-
dencies between related objects [4], e.g., header and item-level documents. So far, the
potential benefits and challenges of using EKGs in an auditing setting have not been
analyzed yet.

4 Prototyping a Graph-Based Visualization for Audit

To investigate the potential benefits and challenges of a graph-based approach in the
first phase of an external audit, we developed a prototype visualization based on an



Event Knowledge Graphs for Auditing: A Case Study 7

Event Knowledge Graph

EventsEvents

ObjectsObjects

RelationshipsRelationships

Events

Objects

Relationships

Tabular filesSAP RDB

(1) extraction (2) construction

Fig. 2. Data transformation procedure.

Fig. 3. Tabular data schema after database extraction (Fig. 2 middle).

EKG. We constructed an EKG directly from the relational ERP SAP data of the P2P
process of Sect. 2 without extracting a classical event log in two steps shown in Fig. 2:
first we extracted the data from the RDB into a tabular format anonymizing the data in
the process (Sect. 4.1), and then we constructed the EKG in an open-source graph DB
and used existing tools to create a prototype visualization (Sect. 4.2).

4.1 Event Data Extraction

Our input is event data stored in an ERP SAP relational database according to the
schema shown in Fig. 1 as described in Sect. 2.2). As explained in Sect. 3, production
systems contain a lot more data than is required for an analysis use case. Therefore,
EY’s auditing experts first filtered the data to a relevant subset as in any standard audit.

To enable EKG construction, the ERP data is extracted into events, objects and re-
lationships according to the schema in Fig. 3 as described below. The following objects
are taken into consideration: purchase order header, purchase order line item, goods
receipt header, invoice header, accounting document line item.

First, the time-stamped records related to the above-mentioned objects are extracted
into events by joining the respective object table of the ERP system with the change
log [6]. For this study, events were further filtered by timestamp to limit the data to a
three-month period that was considered sufficient for the exploration of the concepts.
Generally, the scope of the data has, of course, to be evaluated based on the use case
of each project. Each event record also includes the foreign key to the object record to
which it was joined, so events can be related to objects in a later step. Each activity
requires its own SQL query. For some activities, e.g., the posting of the AD, additional
object tables are joined to limit the ADs related to INV with POs. All events are inserted
into the same table.

Second, we extract from the ERP system’s object tables (Fig. 1) all object records
for which an event was extracted into the object table of Fig. 3.



8 E.L. Klijn et al.

Then we build the relationship table by joining tables according to the ERP system’s
data model (Fig. 1). For example, the purchase order line item is a child of a purchase
order header, or the invoice header posts an accounting document line item. We extract
records of such joins into the relationship table of Fig. 3. Also, relationships from ex-
tracted events to objects are inserted into the relationship table based on the foreign
keys in the event records.

The output of this step is an object table with 304 777 objects of 5 different types, an
event table containing 333 358 events having 10 distinct activities, and, a relationship
table containing 560 975 relationships. Next, we translate these tables into an event
knowledge graph.

4.2 Event Knowledge Graph Construction and Visualization

We constructed the EKG in two steps, thereby extending the original EKG construction
procedure of [4]:

Event and Object Import. While [4] only imports event records and then infers ob-
jects and relations from event attributes based on domain knowledge, we already have
full knowledge of objects and relations from the ERP export of Sect. 4.1 according to
the schema of Fig. 3, which we use as follows. We import event records as event nodes
(as in [4]) and adapted the import queries to also directly import object records as ob-
ject nodes with a dedicated label based on the object type specified in the input data.
Relationships are imported by querying for each record in the relationships table the
source and target node by their type and identifier and then creating a corresponding
edge; we used indices on the event and object identifiers to increase performance. Im-
port of the entire dataset required 2.8 minutes on an Intel i5 CPU 1.6 GHz machine
with 24GB RAM. The result of this step is an EKG with 304 777 entity nodes, 333 358
event nodes, and 560 975 relationships (corr, and between objects, but no df-edges yet);
Fig. 5 shows a sample.

Deriving behavioral relationships. To model the behavior of an object, i.e., the “trace
of an object”, we derive the df-edges using the query from [4] that (1) retrieves all
events e1, ..., ek correlated to an object o, (2) orders them by timestamp ei.time and
(3) creates a df -edge between each subsequent pair of event nodes ej , ej+1. In Fig. 5,
this results in the df-edge from the Create POL to the Change POL event related to the
top-most POL object.

To model the interactions between related objects, we derive df-edges from the per-
spective of the relation between them. For this, we apply a number of queries from [4]:
(1) for each structural relationship in the graph, we first query the objects oi, oj involved
in the relationship, and, we create a new “derived” object oi×j and relate it to oi and oj
via relationships of type derived (2) and for each event e correlated to oi or to oj , we
create a corr relationship from e to oi×j ; (3) we derive df -relationships for each derived
object like explained in the previous. For example, in Fig. 5 this results in the df-edge
from the Create POL to the Create PO event between the top-most POL and is parent
PO object (marked (3) in Fig. 5).

Fig. 4 shows the schema of the resulting EKG.



Event Knowledge Graphs for Auditing: A Case Study 9

Fig. 4. Graph DB schema after event knowledge graph construction (Fig. 2 right).

Prototype visualization. In order to get feedback on the suitability of a graph-based
representation for auditing, we prototyped a visualization of the EKG using Neo4j
Bloom on a subset of the data selected by EY. We queried the EKG for all documents
and events related to a specific AD that was known to EY to involve the auditing chal-
lenges of Sect. 3. We visualized the 5 object types, events, and relations of the schema
(Fig. 4, omitting “derived” objects) using distinct colors, icons, and node sizes, and line
width to distinguish types. We laid out the graph manually (events placed beneath their
related objects, events ordered horizontally according to df-relations).

Fig. 5 shows the chosen subset: it contains two POs (dark blue nodes) related to
three POLs (light blue nodes). Each POL receives one INV document (yellow node)
that posts to one respective AD (green node); all ADs are settled by a single final AD.
There are two additional sets of POLs, INV, ADs (marked (4) and (5) in Fig. 5) whose
preceding POs are outside the extracted 3-month window. Each document has related
event nodes (orange); the df-edges flow “in parallel” with the document relations and
the derived df-edges (marked (1-3) in Fig. 5) show flow between line-item documents
related to the same header. Importantly, the graph explicitly shows each financial trans-
action (ADs) of this execution as individual (green) nodes.

Limitations. Data quality issues and choices mode in the extraction step limit our pro-
totype. A difference in timestamp granularity between the creation of POs and POLs
results in POLs being created before POs (e.g., (3) in Fig. 5), which does not reflect
reality. Limiting just the event extraction by a strict time frame led to objects missing
events and missing related objects which occurred outside the time frame, e.g., missing
Create POL at Fig. 5 (4) and the INV at Fig. 5 (5) is not related to any POL.

5 Results

Feedback. We confronted the auditing experts at EY with the prototype visualization to
receive feedback in relation to the challenges of Sect. 3; their feedback is summarized
below.

No event duplication. The experts immediately recognized that no event was du-
plicated (no convergence) and the graph matches the process description (Sect. 2.2): it
correctly describes that its right-most Settle AD event is a payment to the 5 INV doc-
uments that “flow” into it. Compared to extraction to sequential event logs, where the



10 E.L. Klijn et al.

Create
POL

Create
PO

Approve
PO

Change
POL

Enter
INV

Enter
AD

Settle
AD

Enter
INV

Enter
AD

Enter
AD

Enter
AD

Enter
INV

Enter
AD

Enter
INV

Enter
INV

Approve
PO

Approve
PO

Approve
PO

Change
POL

Change
POL

Create
POL

Create
POL

Create
PO

Approve
PO

Approve
PO

Change
POL

22

11
33

44

55

Fig. 5. Prototypical example of two PO objects and related objects.

same Settle AD event would be extracted into 5 different traces, the auditor no longer
has to spend time to reconcile multiple traces. Also, seeing how every object trace in
the graph eventually ends up in the same payment enables a different view and under-
standing of the process and the auditing task.

Multiple levels of granularity related. As each event is clearly associated to a par-
ticular object on a particular level (item or header), experts find it easier to understand
that approvals to POL changes happen at the header level, while a POL change happens
at the item level. The df-relations between objects of different levels (via “derived ob-
jects”), reveal which PO approval relates to (i.e., follows) which POL changes giving a
larger-scale understanding missing in a POL-oriented event log (see Sect. 3). As a result
it is easier to assess whether there is a violation of this particular control. For example
in Fig. 5 (1) we see an instance where this control is working, i.e., a POL change is
later approved on the PO level, whereas Fig. 5 (2) shows a violation of this control, i.e.,



Event Knowledge Graphs for Auditing: A Case Study 11

a POL is changed and, without further approval, an invoice is entered and eventually
paid.

Layout shows the process along business and accounting objects. By laying out
object nodes in parallel with the df-edges “forward in time”, the graph shows how
multiple POLs (blue nodes) “flow into” multiple accounting documents (green node)
stating multiple related financial transactions. In contrast, using classical event logs, the
auditor has the burden to mentally reconstruct these relations from the source data.

Overall, the ability to read the graph from different perspectives (objects at header
and item-level granularity) opens up the possibility for header-level oriented auditing
analysis that considers larger-scale patterns without suffering from convergence / diver-
gence errors.

Brainstorming. Reflecting on the properties of the prototype led the auditing experts to
generate further potential benefits and requirements for graph-based models in auditing
which we summarize next.

Subsetting in a graph allows an auditor to quickly get to the level of detail that is tied
to certain objects relevant for a control, e.g., POL amounts, vendor, company codes; in
logs the relation between objects and attributes for subsetting is more implicit. But the
graph potentially enables further use cases: Subsetting based on an object would allow
an auditor to assess controls specific to that object, e.g., invoice approval. Subsetting
based on interactions between different objects would allow an auditor to assess con-
trols across those objects, e.g. the control of the PO approval which involves both the
PO and POL object.

Aggregation wrt. particular objects, relations, or patterns would enable auditors to
understand controls on a higher-level of granularity, e.g., by summarizing item-level
events to the related header level.

Recognize impact on controls. If an auditor understands which nodes (objects, events)
in the graph relate to a specific control, then the graph enables an auditor to understand
which events and objects impact which controls (and whether one event or object im-
pacts multiple controls). For example, adding the user as an “object” allows to observe
batch work [5] in turn enabling the auditor to assess whether controls are implemented
correctly in all circumstances, e.g., also in case of batch processing 10 subsequent in-
voice approvals in a short time-frame. This is not possible in a DFG based on a sequen-
tial event log.

The approach enables to inter-link multiple processes in a single graph, enabling,
for instance, to assess whether changes to master data involved in an object impacted a
particular control, which is laborious in a classical setting.

6 Conclusion

This paper presents the results of a case study conducted together with EY on the appli-
cation of graph-based process mining for financial auditing of a real-world P2P process.
The difficulties encountered when extracting event logs from the ERP system of the
process led to the identification of analytical challenges and requirements for process
mining when used in financial auditing. We built a graph-based event representation



12 E.L. Klijn et al.

using an EKG directly from the ERP system data and evaluated this representation for
its suitability to meet the identified requirements.

We found that the graph-based representation shows potential in overcoming the
technical and analytical challenges that arise in PM-based audits on case-based event
logs. This strongly suggests that future research on PM-based auditing solutions should
systematically address these challenges. Another advantage is the flexibility of using
open source software like the one used in our case study. This enables companies to
focus much more on the use cases and its benefits before investing in a broad pro-
cess mining software implementation. Analysis and queries can be executed in an open
source implementation. This helps to sharpen the audit use cases without the need for a
full fledged process mining solution implementation / roll-out.

Our findings are limited by the exploration of a single process and data set, sug-
gesting further studies for robustness. Moreover, the prototype visualization was based
on a manually created layout that significantly helped conveying the structure of the
event data. Substantial research in better visualizations in process mining is required
for automation.

References
1. van der Aalst, W.M.P.: Object-centric process mining: Dealing with divergence and conver-

gence in event data. In: SEFM 2019. LNCS, vol. 11724, pp. 3–25. Springer (2019)
2. Accorsi, R., Lebherz, J.: A practitioner’s view on process mining adoption, event log engi-

neering and data challenges. In: Process Mining Handbook, LNBIP, vol. 448, pp. 212–240.
Springer (2022)

3. Berti, A., van der Aalst, W.M.P.: Extracting multiple viewpoint models from relational
databases. In: SIMPDA 2018 & 2019. LNBIP, vol. 379, pp. 24–51. Springer (2019)

4. Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. J. Data Semant. 10,
109–141 (2021)

5. Fahland, D.: Process mining over multiple behavioral dimensions with event knowledge
graphs. In: Process Mining Handbook, LNBIP, vol. 448, pp. 274–319. Springer (2022)

6. Fahland, D., de Leoni, M., van Dongen, B.F., van der Aalst, W.M.P.: Behavioral conformance
of artifact-centric process models. In: BIS 2011. LNBIP, vol. 87, pp. 37–49. Springer (2011)

7. Jans, M.: Auditor choices during event log building for process mining. J. Emerg. Technol.
Account. 16(2), 59–67 (Aug 2019)

8. Jans, M., Alles, M.G., Vasarhelyi, M.A.: A field study on the use of process mining of event
logs as an analytical procedure in auditing. The Accounting Review 89(5), 1751–1773 (May
2014)

9. Jans, M., Eulerich, M.: Process mining for financial auditing. In: Process Mining Handbook,
LNBIP, vol. 448, pp. 445–467. Springer (2022)

10. Jans, M., Soffer, P.: From relational database to event log: Decisions with quality impact. In:
Business Process Management Workshops. LNBIP, vol. 308, pp. 588–599. Springer (2017)

11. Lu, X., Nagelkerke, M., van de Wiel, D., Fahland, D.: Discovering interacting artifacts from
ERP systems. IEEE Trans. Serv. Comput. 8(6), 861–873 (2015)

12. Werner, M.: Financial process mining - accounting data structure dependent control flow
inference. Int. J. Account. Inf. Syst. 25, 57–80 (2017)

13. Werner, M., Gehrke, N.: Multilevel process mining for financial audits. IEEE Trans. Serv.
Comput. 8(6), 820–832 (2015)

14. Werner, M., Wiese, M., Maas, A.: Embedding process mining into financial statement audits.
Int. J. Account. Inf. Syst. 41, 100514 (2021)


	Event Knowledge Graphs for Auditing: A Case Study

