
Generating Process Anomalies with Markov Chains: A
Pattern-Driven Approach

Jochem Veldman1, Xixi Lu1, Wouter van der Waal1, Marcus Dees2, and
Inge van de Weerd1

1 Utrecht University, Utrecht, the Netherlands
2 UWV, the Netherlands

Abstract. Generating anomalies for process executions helps to train anomaly
detection methods and evaluate their performance. Anomalous behavior tends to
be diverse and very infrequent. Generating process anomalies can help compare
detection models and select the suited ones. However, little research has been
focused on generating anomalous behavior in a systematic and also stochastic
way. In this paper, we built on the idea of training a Markov chain using an event
log to capture regular process behavior. We then use a set of predefined anomaly
patterns to adapt the Markov chain to generate anomalous traces. To evaluate the
quality of our generated anomalies, we use them in the downstream task training
a detection model. For each pattern, we vary the quantity of injected anomalous
traces and their deviation rate. Unsurprisingly, the results show that the models
trained with the generated anomalies have a significant improvement in detecting
these anomalies. The AUC score increased from 0.63 to reaching a maximum of
0.98 or higher for all three patterns. This confirms our expectation that generating
anomalies can help train and evaluate detection models.

1 Introduction

Monitoring business processes and detecting anomalies for early intervention can help
prevent compliance issues. Accurate anomaly detection enables the prompt implemen-
tation of countermeasures. Anomaly detection is an essential task in data analytics that
finds applications across a wide range of industries and is suited for various tasks [1,2].
In addition to the banking sector, anomaly detection is also applied in intrusion detec-
tion, bot detection, fake review detection, identifying terrorist activities, and medical
diagnosis [3].

To evaluate the performance of these detection methods, it is necessary to have test
data with labeled anomalies. However, labeling data instances is expensive and time-
consuming, especially in the field of anomaly detection. In domains such as healthcare,
banking, or insurance, highly trained experts are needed to manually determine if the in-
stance is an anomaly [4]. Furthermore, anomalies are infrequent, leading to imbalanced
data issues. For example, in most cases, the majority of individuals are legitimate users
rather than fraudsters. Consequently, if labeled anomalies are available, they typically
account for only a small percentage, such as 1% of the data [5,6,7]. The scarcity of
labeled data for evaluation is a pervasive challenge within the scientific community.



2 Veldman et al.

Our approach

1) Train 2) Adapt 3) Generate

(c) Markov Model

(a) Event 
log

(d) Adapted 
Markov Model(b) Anomalous 

Patterns

(e) Anomalous
traces

Fig. 1: An overview of the research problem and our proposed approach

Generative approaches have emerged as ways to generate additional data sets [8].
The generated anomalies can then be used to evaluate and compare the performance of
detection methods.

In this paper, we propose a lightweight generative approach for process anomaly
generation using Markov chains and process anomaly patterns. An overview of the ap-
proach is shown in Fig. 1. Assuming we have (a) an event log and (b) a set of patterns
that denote potential anomalous behavior of interest. The set of patterns can be obtained
by either using domain knowledge, using interactive pattern explorer [9], or selecting
the patterns of interest from the repository we built based on a systemic literature re-
view [10].

Given these two inputs, we first train a Markov chain on the input event log, which
represents the normative behavior (Step 1). We then use (b) the anomaly patterns to
adapt the Markov chain (Step 2). Finally, We use (d) the adapted Markov chain to
generate anomalous traces (Step 3).

To evaluate this approach, we inject these generated anomalies into the training
datasets to train supervised detection models. However, it is important to note that the
test data remains untouched and contains the true anomalies. The underlying reason for
this setting is that if the generated process anomalies are of high quality and closely
resemble the true anomalies, injecting these generated anomalies should help train two
detection models and improve their accuracy in detecting the true anomalies. Follow-
ing this setting, we demonstrate the approach using a publicly available BPIC dataset.
The results show that injecting the generated anomalous sequences helps improve the
accuracy of supervised detection models.

The remainder of this paper is organized as follows. In Section 2, we discuss related
work. Next, we introduce the preliminaries in Section 3, followed by the approach in
Section 4, the evaluation in Section 5, and the results in Section 6. Finally, we conclude
the paper in Section 7.

2 Related work

We discuss ways to generate data described in the literature. Below we discuss four
different streams of approaches with respect to process anomaly generation.

Earlier studies that propose detection methods tend to either use a random approach
to add noise or introduce anomalies in an ad-hoc manner to evaluate the detection per-
formance [11,12]. We argue that our approach complements such random approaches
and allows the users to have more control over the generated anomalous traces.

Simulation-based approaches have also been studied and can be used to generate
accurate anomalies. However, assuming a set of multiple different anomalous patterns



Generating process anomalies 3

are of interest, the simulation models have to be manually (re)build or reconfigured. The
effort to rebuild such simulation models highly depends on the simulation model/tool
used. Therefore, we use the lightweight Markov models and propose (step 2) to adapt
the Markov model automatically using the patterns.

Deep models or AI-based generative approaches, such as GAN [13], have also
emerged. In [8], the authors have proposed to integrate Deep models with simulations
models to generate traces. However, given our problem setting as shown in Fig. 1, users
can train GANs on (a) the event log to generate normal traces, but they will have diffi-
culty using the anomalous patterns to adapt GANs or make GANs to generate anoma-
lous traces. Alternatively, one can train GANs on a small set of anomalous traces if such
traces are available. Yet, the GANs trained on anomalies may ignore the normative pro-
cess, whereas our approach largely maintains the distribution in the normative process
(represented by the trained Markov model (c)).

3 Preliminaries

Table 1: Example log for Markov chain ex-
planation

Session ID CustomerID Activity Timestamp

Session 1 1 Start_application 2015-11-06 08:07:22.780
Session 1 1 Input_info 2015-11-06 08:07:40.767
Session 1 1 Send_application 2015-11-06 08:07:51.390
Session 1 1 Accept_offer 2015-11-06 08:08:06.003
Session 2 101 Send_application 2016-02-28 08:17:15.947
Session 2 101 Accept_offer 2016-02-28 08:18:31.454
Session 3 224 Input_info 2016-01-14 08:32:11.511
Session 3 224 Send_application 2016-01-14 08:34:12.123
Session 3 224 Accept_offer 2016-01-14 08:37:23.984
Session 4 7653 Start_application 2016-02-20 20:15:10.321
Session 4 7653 Input_info 2016-02-20 20:16:09.647
Session 5 63 Accept_offer 2016-02-20 20:16:09.647

In this section, we briefly recall the pre-
liminary concepts related to event logs
and Markov chains.

Event logs Let E be the universe of event
identifiers. Let A be a set of activities and
α : E → A an event labeling function
that returns the activity α(e) of event e ∈
E . A trace σ = ⟨e1, e2, · · · , en⟩ ∈ E∗

is a sequence of events. An event log L
is a set of traces. We overload the label-
ing function α with a trace, i.e., α(σ) =
⟨α(e1), α(e2), · · · , α(en)⟩. An example
of an event log is listed in Table 1.

Markov chain We follow the definition
of Markov chain in [14]. Let S = {s1, · · · , sn} be the set of possible states in a Markov
chain. For any states si, sj ∈ S, let P(sj | si) = pij be the transition probability from
the current state si to a subsequent state sj . A Markov chain is represented by a matrix
T = {pij} of transition probabilities, where pij = P(sj | si), for all si, sj ∈ S. We
define a Markov chain M = (S, T ), where S is the set of states, and T is the transition
matrix. For all states si ∈ S,

∑
sj∈S P(sj | si) = 1. As in [14], we extend the set S

with two special states - a start state (◦) and an end state (•). For instance, P(si | ◦) is
the probability of the Markov chain starting in state si; P(• | si) is the probability of the
Markov chain ending in state si. Note that

∑
si∈S P(si | ◦) = 1,

∑
si∈S P(◦ | si) = 0,

and
∑

si∈S P(si | •) = 0.



4 Veldman et al.

4 Approach

4.1 Log to Markov chain

Inspired by existing work on training Markov chain using event logs such as [15], the
first step of our approach is to train a first-order Markov chain (S, T ) from an event
log L, where the states S are the set of activities A with the start and end states {◦, •}
added. For each trace in the log, we added a dummy “START” at the beginning of the
trace and a dummy “END” at the end of the trace, to correspond to the start and end
states, respectively.

To compute the transition probabilities T , we first calculate the frequency matrix
of any two consecutive activities, i.e., Freq(a, b) :=

∑
σ∈L #{(ei, ei+1) | α(ei) =

a ∧ α(ei+1) = b ∧ ei, ei+1 ∈ σ}. For instance, considering the example log listed
in Table 1, we obtain the frequency matrix listed in Table 2. Next, for each row, we
compute the row total and divide the value in each cell by the row total. The final
matrix of transition probabilities is listed in Table 3. In this paper, we only describe the
basic algorithm where the last occurred activity is considered as the state; for a more
general algorithm, we refer to [15].

4.2 Process Anomaly Patterns

We define process anomaly patterns as directed, labeled graphs P = (A′,→). The pro-
cess anomaly patterns of interest can be obtained by using domain knowledge or using
interactive pattern explorer [9]. In addition, to support users creating anomaly patterns
of interest, a systematic literature review was conducted to establish a repository of
anomaly patterns. In total, 24 domain-specific fraudulent patterns and 14 anomaly pat-
terns in process mining were found. A detailed description of each anomaly pattern is
presented in [10]. Each of the domain-specific fraudulent characteristics can be used
to create a process anomaly pattern P = (A′,→) and used further by our approach to
generate anomalous traces.

In the following, we explain three examples of process anomaly patterns, selected
from the repository [10]. We focus on explaining these three patterns because they are
used in the evaluation.

Repetition The repetition pattern is often described in the literature as an anomaly char-
acteristic in process mining [10]. It consists of a single activity that can be performed
more or less frequently than expected. This pattern manifests itself as P = (A′,→)

Table 2: Frequency matrix resulted from
counting of all consecutive events

Accept_
offer

Input_
info

Send_ap-
plication

Start_ap-
plication

END sum

START 1 1 1 2 0 5
Accept_offer 0 0 0 0 4 4

Input_info 0 0 2 0 1 3
Send_application 3 0 0 0 0 3
Start_application 0 2 0 0 0 2

Table 3: Transition probabilities discov-
ered using the example event log

Accept_
offer

Input_
info

Send_ap-
plication

Start_ap-
plication

END

START 0,2 0,2 0,2 0,4 0
Accept_offer 0 0 0 0 1

Input_info 0 0 0,67 0 0,33
Send_application 1 0 0 0 0
Start_application 0 1 0 0 0



Generating process anomalies 5

(a) repetition pattern

(b) direct-follow pattern (c) Advanced repetition pattern

Fig. 2: Examples of the three patterns obtained and used in the evaluation.

where A′ = {a} consists of a single activity, and →= {(a, a)}. An example of the rep-
etition pattern can be seen in Figure 2a, which is a repetition of “../AANVRAGEN-WW”.

Direct-follow The direct-follow relation consists of two consecutively occurring activ-
ities in a trace. Note that the directly-follows pattern is directed, i.e., when an activity a
is directly followed by another activity b is considered an anomalous pattern, then this
does not imply that b directly followed by a is also an anomaly. This pattern manifests
itself as P = (A′,→), where A′ = {a, b} consists of two activities, and →= {(a, b)}.
The direct-follow relation can be seen in Figure 2b.

Advanced repetition The advanced repetition pattern consists of three different activ-
ities. Activity a links to activities b and c. Activity b and c link back to activity a. All
the links between the activities are direct links. This creates a loop between activity a
and b and between activities a and c. We define this pattern as P = (A′,→), where
A′ = {a, b, c} is the set of three activities, and →= {(a, b), (b, a), (a, c), (c, a)}.

Configured Anomaly Patterns The reason for these simple anomaly patterns is that
they can be easily reused and adapted to different contexts where an event log is avail-
able. As we would like to use them to generate anomalous traces, the users should
be able to configure the deviation rate and the number of generated traces. We de-
fine a configured anomaly pattern Pδ,k = (A′,→, δ, k) where (A′,→) is the pattern,
δ : (A′ × A′) → R is the deviation rate that maps each edge in the pattern to a real
number, and k ≥ 1 is the number of traces to be generated.

4.3 Using patterns for adapting Markov chains

Assuming we have a Markov chain (S, T ) trained from the event log L and a configured
Pδ,k, for each (a, b) ∈→, we update the transition probability T by adding δ(a, b) to
T (a, b). After that, we (re)normalize each row such that the transition probabilities of a
row sum up to 1.

For example, let us consider the repetition of “SEND_APPLICATION” as a con-
figured anomaly pattern with a deviation rate of 10. Thus, we change this transition
probability to T (“SEND_APPLICATION”, “SEND_APPLICATION”) + 10, see Table 4.
We overwrite this value with a new value 10. After that, we (re)normalize the probabil-



6 Veldman et al.

Table 4: The highlighted transition prob-
ability will be changed for the repetition
pattern. If the deviation rate is 10, the cell
value will be increased by 10.

Accept_
offer

Input
_info

Send_
application

Start_ap-
plication

END

START 0,2 0,2 0,2 0,4 0
Accept_offer 0 0 0 0 1

Input_info 0 0 0,67 0 0,33
Send_application 1 0 0 0 0
Start_application 0 1 0 0 0

Table 5: After applying the deviation rate,
the transition probabilities of the entire
row will be recalculated; the cell value is
divided by the row total.

Accept_
offer

Input
_info

Send_
application

Start_ap-
plication

END

START 0,2 0,2 0,2 0,4 0
Accept_offer 0 0 0 0 1

Input_info 0 0 0,67 0 0,33
Send_application 0,09 0 0,91 0 0
Start_application 0 1 0 0 0

ities such that the sum of the probabilities at each row is 1, which resulted in 0.91, see
Table 5.

4.4 Generating Anomalies using Markov chain

In step (3), we generate anomalous traces using the configured anomaly pattern and
the adapted Markov chain as our inputs. We briefly sketch the algorithm. It begins with
the starting activity. From the “START” row, the activities and their corresponding
probabilities are considered. The follow-up activity is chosen randomly based on the
given probabilities.

For example, assuming the adapted Markov chain in Table 5, this would mean that
there is 20% that “INPUT_INFO” will be selected as the start activity. If this activity is
indeed selected as the starting activity, an “INPUT_INFO” event is appended to a new
trace. The algorithm then continues with the row “INPUT_INFO” and considers the
subsequent activities and their probabilities, i.e., “SEND_APPLICATION” with a 67%
probability and “END” with a 33% probability. Let’s assume that the function selects
“END” as the consecutive activity, then an event of “END” is appended to the trace.
The activity “END” signifies that the generated sequence has reached its final state and
is considered complete.

To ensure the generated trace is relevant while maintaining the stochastic nature,
we check if the trace at least contains the activities of the anomaly pattern. If the trace
meets this condition, it is added to the set of generated anomalous traces until the desired
number of generated anomalous traces k has been reached.

5 Evaluation

We implemented the proposed approach in Python (version 3.9.7). For Python, we used
Pandas, Numpy, and Sci-kit learn as our main libraries. The implementation was done
in Jupyter Notebook and made publicly available3. The objective is to (1) show that
our approach can used to generate anomalous traces and (2) investigate the effect on
the existing detection methods when injecting the generated anomalous traces into the
training set.

3 https://github.com/JochemVeldmanUU/Thesis_anomaly_generation

https://github.com/JochemVeldmanUU/Thesis_anomaly_generation


Generating process anomalies 7

5.1 Data description

We use a public dataset from the BPIC 2016 [16] which is provided by the dutch organi-
zation Uitvoeringsinstituut Werknemersverzekeringen (UWV). The UWV is a govern-
mental organization responsible for employee-related social benefits in the Netherlands.
In this evaluation, we use the click data of visits to the UWV website for logged-in
clients. The original dataset contains no labels.

The event log provided covers the period from 6 November 2015 to 28 February
2016. The data consists of 7,174,934 rows and has a size of 1.06GB. A total of 781
unique activities (i.e., web pages) have occurred in 660,270 sessions (traces). The aver-
age number of activities per trace is 10.87, covering 26,647 unique users. The variables
that have our interest are CustomerID, SessionID, TIMESTAMP, and URL_FILE. We
use the session id as the case id and the URL_FILE as the activity. In addition, we
selected a set of 50,000 traces due to the capacity limitation of the laptop used.

5.2 Interviews for Labeling Anomalies

To evaluate the quality of the generated process anomalies, we obtain the labels of true
anomalies via interviews with the domain expert. It is important to note that this step
to obtain labels is not a step in our approach (see Fig. 1); it is only needed for the
evaluation we designed.

Two interviews were held with the UWV domain expert who provided the dataset.
We obtained the three concrete rules to label anomalous traces. For each rule, we create
a separate class label.

The first rule follows the repetition pattern. After the interview, it is concluded that
when a trace includes more than fifty repetitions of the same activity “../AANVRAGEN-
WW”, then the trace is considered an anomaly, with no other activities visited in be-
tween. This labeling of the data results in 465 traces that are marked as an anomaly.
The other traces are labeled as normal instances.

The second rule follows the direct-follow pattern. The labeling rule is decided that a
trace is an anomaly if it has more than one occurrence of a direct-follows relation from
activity “/XPSIMAGE/WDO212395” to activity “../AANVRAGEN-WW”. This results in
87 traces that are labeled as anomalies.

The third rule follows the advanced repetition pattern. The labeling rule is defined as
follows: a trace is an anomaly if the trace contains more than three non-consecutive ex-
ecutions of activity “../HOME/SERVICES/REQUESTS-WW”. This results in 352 labeled
anomalies, and the rest are labeled as normal instances.

5.3 Setup

After obtaining the labeled event log with true anomalies, we use this data set to evalu-
ate our approach to generate anomalies. Assuming we do not have the labeling rules but
only the following three anomaly patterns: (1) the repetition of the activity “../AAN-
VRAGEN_WW”, (2) the directly-follows pattern from the “/XPSIMAGE/WDO212395”
activity to the “../AANVRAGEN_WW” activity, and (3) the advanced repetition pattern



8 Veldman et al.

between “../AANVRAGEN_WW”, “HOME” and “DIENSTEN/OVERZICHT”. The three
patterns are shown in Figure 2.

We follow a standard pipeline for training and evaluating a supervised machine-
learning model to detect anomalies. In the following, we explain the setup.

Generate anomalies We use our approach to generate anomalies. The three patterns are
matched to the Markov model and used to manipulate the probability of the correspond-
ing transition probabilities. For the deviation rate δ, we use values of {0, 0.2, 1, 5, 25}
for all relations in δ. For each value, we recalculate the probability such that the total
probabilities sum up to one. Using the adjusted Markov model, we apply our approach
and generate the anomalous traces. For the number of anomalous traces injected, we set
k to the values of {0, 10, 100, 500, 1000, 2000}.

Trace encoding For encoding the traces to fit the detection technique, we use the simple
bag-of-activities encoding, i.e., the activities as the features. For each trace, for each
activity, we encode the occurrence frequency of the activity as the feature value.

We split the normal traces randomly into a training set (80% of the original) and a
test set (20% of the original). From the true anomaly traces, 10 traces are included in
the training data, to mimic the real-life imbalanced data issue with very few anomalous
instances labeled. The rest of the true anomaly traces are added to the test data. Next,
the generated anomalies are added to the training dataset at different rates. The test set
is unchanged.

Training and evaluating the detection model We use a logistic regression model with
default parameters and later a decision tree as the supervised detection methods. The
max iteration is set to 1000. We evaluate the performance of the detection model using
AUC, recall, and precision.

6 Results and Discussion

This section presents the obtained results. As aforementioned, the objective is to show
that the approach helps to generate anomalies and to investigate the effect on the down-
stream anomaly detection techniques. The underlying rationale is that if the generated
process anomalies closely resemble true anomalous behavior, then injecting these gen-
erated anomalies into the training data should lead to improved detection accuracy for
the detection methods. This improvement is expected since we are to some extent leak-
ing information to the detection methods. In the following, we examine the AUC per-
formance of the detection model under different settings of δ and k.

6.1 AUC scores

Repetition pattern Table 6 lists the attained AUC scores for the repetition pattern. The
column names represent the deviation rate, while the row names indicate the number
of injected anomalous traces. The first row represents the baseline AUC score, thus
without injecting the generated anomalies.

As can be seen in Table 6, the AUC score demonstrates a notable increase from
0.666 to 0.995, with an improvement of 0.329. In the setting where the deviation rate



Generating process anomalies 9

Table 6: The AUC scores of the detec-
tion model trained with varying settings
for the repetition pattern.

Number of
anomalous

traces
injected

AUC score
Deviation
rate = 0

AUC score
Deviation
rate = 0.2

AUC score
Deviation
rate = 1

AUC score
Deviation
rate = 5

AUC score
Deviation
rate = 25

0 0.666 0.666 0.666 0.666 0.666

10 0.662 0.649 0.680 0.698 0.670
100 0.796 0.831 0.859 0.832 0.760
500 0.998 0.987 0.984 0.954 0.880
1000 0.995 0.997 0.993 0.978 0.917
2000 0.994 0.994 0.995 0.992 0.953

Table 7: The AUC scores of the model
trained with varying settings for the
direct-follow pattern.
Number of
anomalous

traces
injected

AUC score
deviation
rate = 0

AUC score
deviation
rate = 0.2

AUC score
deviation
rate = 1

AUC score
deviation
rate = 5

AUC score
deviation
rate = 25

0 0.623 0.623 0.623 0.623 0.623

10 0.636 0.636 0.649 0.649 0.688
100 0.630 0.643 0.753 0.773 0.708
500 0.817 0.869 0.914 0.940 0.940
1000 0.907 0.946 0.972 0.998 0.985
2000 0.944 0.976 0.995 0.996 0.996

Table 8: The AUC scores for the advanced
repetition pattern.
Number of
anomalous

traces
injected

AUC score
deviation
rate = 0

AUC score
deviation
rate = 0.2

AUC score
deviation
rate = 1

AUC score
deviation
rate = 5

AUC score
deviation
rate = 25

0 0.577 0.577 0.577 0.577 0.577

10 0.569 0.572 0.560 0.566 0.556
100 0.621 0.607 0.588 0.577 0.560
500 0.823 0.640 0.612 0.596 0.570

1000 0.936 0.670 0.620 0.597 0.580
2000 0.980 0.710 0.636 0.613 0.572

Table 9: The optimal AUC, precision,
and recall scores of our approach (M)
compared with the oversampling tech-
nique (SO).

AUC Precision Recall F1

Pattern OS M OS M SO M SO M

Repetition 0.888 0.995 0.99 0.93 0.78 0.99 0.87 0.96
Direct-follow 0.870 0.996 0.89 0.72 0.74 0.83 0.81 0.77

Advanced repetition 0.757 0.980 0.92 0.76 0.51 0.97 0.66 0.85

is 1 and 2000 anomalous traces are injected, the detection model achieves its highest
AUC score. On average, injecting 2000 anomalous traces with different deviation rates
yields an AUC improvement of 0.320 compared to the baseline. Interestingly, setting
the deviation rate to a high value of 25 yields a less significant improvement.

Direct-follow pattern Table 7 shows the AUC scores attained for the direct-follow
pattern. The AUC score for this pattern also shows a significant improvement of 0.373,
reaching 0.996. This improvement is obtained when the deviation rate is set to 5 or 25.
These two settings also achieve the highest AUC score. On average, these settings in
the table achieve an increase of 0.358 in the AUC scores.

Advanced repetition pattern Table 8 lists the AUC scores attained for the advanced
repetition pattern. The AUC scores for this pattern also show an increase of 0.403 (from
0.577 to 0.980), where the deviation rate is set to 0 and the number of injected anoma-
lous traces to 2000. Interestingly, the performance improvement differs significantly
between the deviation rate of 0 and the other deviation rates. In contrast to the previous
patterns, the increase in AUC scores diminishes as the deviation rate is set to higher
values. For instance, when the deviation rate is set to 25, four out of five obtained AUC
scores are even lower than the baseline AUC of 0.577.

Overall, the improvements in AUC are as we expected. In addition, our observations
indicate that when the deviation rate is set to a relatively low value, injecting a large
number of generated anomalous traces significantly enhances the detection model’s
AUC performance, compared to not injecting any traces. We also computed the recall
and precision, which exhibit similar trends but slightly less significant improvements
compared to the AUC scores. The optimal recall and precision scores for each pattern
are listed in Table 9.



10 Veldman et al.

6.2 Comparative experiments

We compare our results to a sampling approach. We use the training set that contains
the true anomalies but no generated anomalies and the unchanged test set and used
an oversampling technique. Additionally, we also use another detection model, i.e.,
decision tree, to investigate the generalizability of the effects.

Comparing to oversampling For the implementation of the oversampling method, we
used the RandomOverSampler from the Imbalanced learn library. This function over-
samples the minority class by randomly picking samples with replacements. The origi-
nal training set includes 39,957 normal traces and 10 true anomaly traces. The oversam-
pling function samples these 10 traces and increases the number of anomalous traces to
39,957 to balance the classes. The resulting oversampled training set was used to train
a logistic regression model, which was subsequently evaluated using the test set.

Table 9 presents the results attained by the logistic regression trained using the
oversampled data. The highest scores are highlighted in bold for comparison with our
generative approach. When comparing oversampling with the generative approach, we
observe that oversampling achieves a higher precision score but a lower recall score.
However, when considering the F1 score, we see that our generative approach achieves
a higher score for the repetition and advanced repetition scores. On the other hand, the
oversampling technique achieves a better F1 score for the direct-follow pattern.

Considering the AUC scores, it is evident that the generative approach achieves bet-
ter AUC scores for all three patterns compared to the oversampling technique. Hence,
these findings suggest that injecting the anomalous traces helps the detection methods in
effectively distinguishing between normal and abnormal behavior, leading to a notable
increase in AUC scores. This result is also expected since we are using more complex
models (i.e., the Markov chains) to capture the anomalous behavior than just sampling.
It is worth noting that the lower precision or F1 score observed may be attributed to the
cut-off threshold set for classifying anomalies in the detection methods. Adjusting the
anomaly threshold could potentially improve the precision and F1 score.

Using the decision tree model We conducted a similar experiment using a Decision
Tree model instead of a Logistic Regression model. The improvements in the per-
formance of the Decision Tree model were less significant compared to the Logistic
Regression model. However, the results still exhibited the same trend observed in the
Logistic Regression model. In the AUC curves, we observed that increasing the number
of injected anomalous traces led to improved performance. Additionally, increasing the
deviation rate also resulted in a slight increase in performance, although this increase
differed from that observed in the Logistic Regression model. Notably, the Decision
Tree model performed well for the advanced repetition pattern when the deviation rate
was increased, which was not the case for the Logistic Regression model.

6.3 Discussion

The evaluation results have shown that generating and injecting the anomalies helps to
improve the detection accuracy significantly. For the repetition pattern, our approach
helps to achieve an increase of an AUC from 0.666 to 0.995 and an increase in the F1



Generating process anomalies 11

score from 0.50 to 0.96. For the direct-follow pattern, the AUC increases from 0.623 to
0.996, and the F1 score from 0.39 to 0.77. For the advanced repetition pattern, the in-
jection of anomalies did not help as much as for the other two patterns. It only achieves
good results when the deviation rate is 0. For this deviation rate, we achieve an increase
in AUC from 0.577 to 0.980 and in F1 score from 0.26 to 0.85.

We observed that injecting more generated anomalies leads to an increase in both
the AUC score and recall, while the precision decreases for all three patterns. How-
ever, the high AUC scores indicate that the detection model effectively distinguishes
anomalies from normal behavior. This suggests that the cutoff threshold could be fur-
ther optimized, for example, through the use of cross-validation.

Compared to injecting more generated traces, increasing the deviation rate has a
less significant impact on the AUC scores obtained by the models for the repetition and
direct-follow patterns. The resulting AUC scores related to these two patterns tend to
converge to a similar value across different configurations with varying deviation rates.
However, for the advanced repetition pattern, we observe a decrease in AUC when the
deviation rate is increased. We attribute this to the complexity of the pattern and the
simplicity of our features and detection model, which may not accurately learn the
decision boundary. In future work, we suggest experimenting with other trace encoding
techniques, such as encoding the transitions between activities.

A side effect that arose during the evaluation is the iterative nature of our pattern-
driven approach, which uses anomaly patterns as a starting point and supports inspect-
ing the potential anomalies and refining the patterns. During the first interview, we
identified the three general anomaly patterns of interest. After the first interview, these
patterns are instantiated with the concreted activities that occurred in the data set and an-
alyzed. During the second interview, the instances that follow the patterns are discussed
with the experts and used to decide on concrete labeling rules. This iterative process al-
lowed for a collaborative and informed approach to refining the anomaly patterns based
on expert insights, making this approach suited for domain-specific or data-specific
adaptions.

We discuss the following limitations. (1) The anomaly patterns we investigated in
the evaluation are rather simplistic. Our definition of process anomaly patterns is how-
ever general and can capture more complex patterns. Moreover, the Markov models
can be extended with more refined state abstraction. We consider this study as a first
step that confirms the potential of this direction. (2) The detection methods and the
trace encoding used in the evaluation are simple, classic machine-learning techniques.
For future work, we should investigate the effect of injecting generated anomalies on
more advanced trace encoding and detection techniques. (3) One may argue that if the
anomaly patterns are known, one can use the patterns to detect anomalies, which we
agree with. However, our approach aims to generate anomalies, which can also be used
to evaluate and compare the detection methods.

7 Conclusion

In this paper, we have presented a light-weighted approach for generating stochastic
process anomalies using Markov models. We use the anomaly patterns to adapt the



12 Veldman et al.

Markov model. The adapted Markov model is used to generate anomaly traces, leverag-
ing the stochastic nature of Markov models. Our evaluation demonstrates that injecting
these generated anomalous traces improves the AUC of the detection models, achiev-
ing a 0.98 or higher, which confirms our expectation. This suggests that the generated
anomalies can be used to further train or evaluate the detection methods.

For future research, an interesting direction would be to explore the diverse ways of
training the Markov chain to capture data attributes or timestamps, expanding the scope
of anomaly generation in process mining.

References

1. M. Ahmed, A. Mahmood, and M. Islam, “A survey of anomaly detection techniques in fi-
nancial domain,” Future Gener. Comput. Syst., vol. 55, pp. 278–288, 2016.

2. M. Goldstein and S. Uchida, “A comparative evaluation of unsupervised anomaly detection
algorithms for multivariate data,” PloS one, vol. 11, no. 4, p. e0152173, 2016.

3. S. Alla and S. Adari, Beginning anomaly detection using python-based deep learning.
Springer, 2019.

4. N. Tax, K. de Vries, M. de Jong, N. Dosoula, B. van den Akker, J. Smith, O. Thuong,
and L. Bernardi, “Machine learning for fraud detection in e-commerce: A research agenda,”
CoRR, vol. abs/2107.01979, 2021.

5. G. Pang, C. Shen, L. Cao, and A. van den Hengel, “Deep learning for anomaly detection: A
review,” ACM Comput. Surv., vol. 54, no. 2, pp. 38:1–38:38, 2021.

6. A. Adewumi and A. Akinyelu, “A survey of machine-learning and nature-inspired based
credit card fraud detection techniques,” Int. J. Syst. Assur. Eng. Manag., vol. 8, no. 2s, pp.
937–953, 2017.

7. I. Achituve, S. Kraus, and J. Goldberger, “Interpretable online banking fraud detection based
on hierarchical attention mechanism,” in 29th IEEE International Workshop on Machine
Learning for Signal Processing, MLSP 2019, Pittsburgh, PA, USA, October 13-16, 2019.
IEEE, 2019, pp. 1–6.

8. M. Camargo, M. Dumas, and O. G. Rojas, “Discovering generative models from event logs:
data-driven simulation vs deep learning,” PeerJ Comput. Sci., vol. 7, p. e577, 2021.

9. M. Vazifehdoostirani and et. al., “Interactive multi-interest process pattern discovery,” in
BPM 2023, ser. LNCS, vol. (accepted). Springer, 2023.

10. J. Veldman, “Generating process anomalies using a taxonomy of fraud characteristics and
markov models for accurate detection,” Master’s thesis, Utrecht University, 2022. [Online].
Available: https://studenttheses.uu.nl/handle/20.500.12932/42635

11. M. Alizadeh, X. Lu, D. Fahland, N. Zannone, and W. van der Aalst, “Linking data and
process perspectives for conformance analysis,” Comput. Secur., vol. 73, pp. 172–193, 2018.

12. X. Lu, D. Fahland, F. J. H. M. van den Biggelaar, and W. M. P. van der Aalst, “Detecting
deviating behaviors without models,” in BPM Workshops, ser. LNBIP, vol. 256. Springer,
2015, pp. 126–139.

13. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C.
Courville, and Y. Bengio, “Generative adversarial nets,” in NIPS, 2014, pp. 2672–2680.

14. D. R. Ferreira and D. Gillblad, “Discovering process models from unlabelled event logs,” in
BPM, ser. Lecture Notes in Computer Science, vol. 5701. Springer, 2009, pp. 143–158.

15. W. M. P. van der Aalst, M. H. Schonenberg, and M. Song, “Time prediction based on process
mining,” Inf. Syst., vol. 36, no. 2, pp. 450–475, 2011.

16. M. Dees and B. B. van Dongen, “BPI Challenge 2016,” 2016.

https://studenttheses.uu.nl/handle/20.500.12932/42635

	Generating Process Anomalies with Markov Chains: A Pattern-Driven Approach

