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Abstract. Process mining utilizes event data to gain insights into the execution
of processes. While techniques are valuable, their effectiveness may be hindered
when dealing with highly complex processes that have a vast number of variants.
Additionally, because the recorded events in information systems are at a low-
level, process mining techniques may not align with the higher-level concepts
understood at the business level. Without abstracting event sequences to higher-
level concepts, the outcomes of process mining, such as discovering a model,
can become overly complex and challenging to interpret, rendering them less
useful. Some research has been conducted on event abstraction, often requiring
significant domain knowledge that may not be readily accessible. Alternatively,
unsupervised abstraction techniques may yield less accurate results and rely on
stronger assumptions. This paper introduces a technique that addresses the chal-
lenge of limited domain knowledge by utilizing a straightforward approach. The
technique involves dividing traces into batch sessions, taking into account rela-
tionships between subsequent events. Each session is then abstracted as a sin-
gle high-level activity execution. This abstraction process utilizes a combination
of automatic clustering and visualization methods. The proposed technique was
evaluated using a randomly generated process model with high variability. The
results demonstrate the significant advantages of the proposed abstraction in ef-
fectively communicating accurate knowledge to stakeholders.

Keywords: Event log abstraction · Parallel relationships · Clustering · Visual
analytics · Process discovery.

1 Introduction

In today’s data-driven business landscape, organizations have access to vast amounts of
event data generated by their information systems. This event data captures valuable in-
sights into how processes are executed in the organization. Process mining techniques
have emerged as powerful tools to analyze and leverage this event data to gain valu-
able insights into process execution. However, as processes become more complex and
exhibit a large number of variants, the effectiveness of traditional process mining tech-
niques is diminished [13]. Moreover, the low-level nature of the recorded events in in-
formation systems often fails to capture the higher-level concepts known at the business
level, further complicating the analysis and interpretation of process mining results.



2 O. Dogan and M. de Leoni

The need to abstract low-level event sequences into higher-level activities has been
recognized as a crucial step in enhancing the usability and interpretability of process
mining outcomes [10]. Traditional approaches to event abstraction often rely on signifi-
cant domain knowledge, which may not be readily available or feasible to obtain. Thus,
there is a pressing need to develop a technique that enables effective event abstraction
without relying on extensive domain knowledge and with improved accuracy.

Existing approaches assume that each low-level sequence that is abstracted to one
high-level activity does not interleave with other low-level sequences. In other words,
there are no parallel high-level activities. This is a strong assumption because parallel
activities are performed simultaneously, and the execution order changes in different
traces.

This paper puts forward a technique that detects parallel low-level sequences by
leveraging a combination of clustering and visualization methods. The proposed tech-
nique first identifies session creation rules by evaluating the time threshold and the
parallel relationship between subsequent low-level events. Events having parallel rela-
tionships are assigned into different sessions to catch the parallelism. Then, it encodes
the sessions as vectors, with each dimension representing an activity associated with
a low-level event. A clustering algorithm groups the vectors of similar low-level se-
quences into clusters, where each cluster includes a set of parallel events. An abstracted
model is generated using high-level event sequences. Then, each cluster, including sub-
logs, is discovered for sub-models, and sub-models are replaced with the corresponding
high-level activity on the abstracted model. After this replacement, the model’s qual-
ity is measured with different parameter values. The parameter values giving the best
quality are chosen to use for the evaluation of the abstraction technique.

The effectiveness of the proposed technique was evaluated through different syn-
thetic processes and event logs. The results showed that the abstraction technique en-
ables to mining process models with a better balance of fitness and precision.

2 Motivation

This section motivates the importance to consider the interleaving of low-level se-
quences. The discussion is based on the work by de Leoni et al. [7], but a similar
reasoning applies when employing other techniques that overlook the parallelism of
high-level activities [13]. The event-log abstraction technique in [7] divides traces into
sessions, where each session represents the smallest subsequences within a trace. A
session is determined based on a user-defined threshold, which is the time difference
between the last event in a session and the first event in the subsequent session.

Let us consider the model in Figure 1 to motivate the importance of consider par-
allelism of high-level activities. The model consists of three parallel branches, each of
which corresponds to one high-level activities. High-level activities A and B consists
of the sequence of three low-level ones, in the model represented by the sequences
⟨A1, A2, A3⟩, ⟨B1, B2, B3⟩. Similarly, high-level activities C consists of the sequence
of two low-level activities. The corresponding event log records the execution of these
the low-level activities, and no information is stored about the high-level counterparts.
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Fig. 1. An illustrative model including three parallel low-level sequences corresponding three
different high-level activities

Fig. 2. Heatmap of clustering results for the technique in [7]. It highlights how each cluster has
one or two evident dominant low-level activities (the cells of the darkest colors) according to the
cluster centroids. There is only one cluster and the dominant low-level activities D1, B3, etc.

The timestamps of the low-level events are temporarily space out with a distance of one
second from each other.

After applying the technique by de Leoni et al. [7] using a threshold of nine seconds,
the outcome is one single cluster in which every low-level activity is added. This can be
visualized through the heatmap in Figure 2, which illustrates the centroid of the created
cluster. The most frequent low-level activities are given darker colours.

The expectation is to obtain four clusters, namely for the low-level activities re-
lated to the high-level A, B, C and D. However, since the low-level activities are given
timestamps with distance of one second against a threshold session of nine seconds, the
technique assigns every low-level activities into the same session, making it impossible
to create the expected clusters. This can be solved by observing that low-level activ-
ities must not be in the same cluster if they can occur in any order, namely they are
parallel. This idea motivates the research work reported in this paper. The remainder
will detail the techniques. When parallelism is considered, we obtain the clusters de-
picted in Figure 3. The high-level activity A is covered via Cluster 0 where the most
frequent low-level activities are indeed A1, A2 and A3. Clusters 1 and 3 incorporate the
low-level activities related to the high-level activities C and B, respectively. Note the
presence of clusters 2, 4 and 5, which are respectively related to high-level activities B,
A and C: in these clusters, a predominant low-level activity is also D1, which indeed
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Fig. 3. Heatmap of clustering results for the proposed technique. Six clusters have different dom-
inant low-level activities, and none of the clusters has low-level activities having a parallel rela-
tionship.

may follow A3, B3 or C2. In fact, the expected cluster for high-level activity D has
been merged with those for A, B and C. The approach is thus not exactly achieving the
four clusters, as expected, but yet is able to approximate the expected results.

3 Related Work

The problem of event-log abstract is currently gaining momentum, but most of the
techniques do not consider the parallelism among high-level activities. Bakullari and
van der Aalst [3] developed a framework for generating high-level events by dividing
events into time windows. Van Eck et al. [11] presented an approach for creating high-
level event logs from sensor data of smart products using segmentation and cluster-
ing techniques. Similarly, Brzychczy et al. [4] employed a combination of hierarchical
clustering and domain knowledge to identify process stages. Michael Mayr et al. [9] ex-
tended the approach proposed by van Eck et al. [11] by incorporating time-series-based
process-state and product-state data as additional attributes in the event log. Augusto et
al. [1] applied the k-th order Markovian abstraction technique to create high-level ac-
tivities and then discovered process models to compare the quality of the models based
on a family of fitness and precision measures.

Some techniques support high-level activities parallelism, but they rely on manual
effort and domain expertise. Mannhardt and Tax [8] suggested first discovering local
process models from the event log to capture the behavior of specific subsets of events.
The local process models were then used to lift the event log to a higher level of ab-
straction. Van Houdt et al. [12] employed a method that combines local process models
with behavioral pattern mining to identify event abstraction patterns, leveraging on the
event-log transformation by Mannhardt and Tax [8]. Baier et al. [2] leverage on domain
knowledge to guide the event abstraction algorithm that also supports parallelism. By
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incorporating domain knowledge, the algorithm achieves a more precise and contextu-
ally relevant event abstraction.

However, domain knowledge is often not readily available in real life. This paper
presents a novel approach that considers parallelism, while not requiring domain knowl-
edge.

4 Preliminaries

The initial step of an abstraction technique involves utilizing an event log, which com-
prises a collection of traces. Each trace represents a process instance (i.e., a case) ma-
nipulated in terms of activities performed and process attributes that are influenced.

Definition 1 (Events). Let A be the set of activity names, and T be the universe of
timestamps, and I be the universe of event identifiers. An event is a triple e = (a, t, i) ∈
A × T × I and represents that the event with identifier i refers to the execution of an
instance of activity a for at timestamp t.

We use shortcuts λA(e) = a, λT (e) = t, λI(e) = i to extract the activity name a,
the timestamp t, and identifier i of any event e. Events may define several additional
attributes, but they are not formalized here, to keep the notation simple. A trace refers
to a sequence of events:

Definition 2 (Traces and Event Logs). A trace σ is a sequence of events, i.e., σ ∈ E∗.
An event log L is a set of traces, i.e., L ⊂ E∗.

The concept of parallelism used here is based on the dependency measured introduced
within the Heuristic Miner [10]:

Definition 3 (Dependency Measure). Let A be the set of activity names, and T be the
universe of timestamps, and I be the universe of event identifiers. Let E = A × T × I
be the university of events. Let L ⊂ E∗ be an event log. For each pair (a, b) ∈ A × A,
let us denote |a >L b| as the number of occurrences of events for activity a followed by
events for b in L. The dependency measure is defined as follows:

a ⇒L b =

{ |a>Lb|−|b>La|
|a>Lb|−|b>La|+1 if a ̸= b

|a>La|
|a>La|+1 if a = b

(1)

The value of a ⇒L b is always between -1 and 1. If the absolute value of a ⇒L b is
lower than an user-defined threshold, activities a and b may be considered in parallel.

5 Abstraction Technique

Figure 4 depicts the steps of the proposed abstraction technique. The input consists of an
event log, which is split into training and testing. The training event log is used to create
sessions at step 1: the events of each trace of the event log are divided into sessions. A
session is a sequence of events. At step 2, sessions are clustered, where each cluster
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Fig. 4. Abstraction technique framework

represents a high-level activities. The sessions of each cluster are the sequence of low-
level activities that are mapped to the high-level activity corresponding to that cluster.
At step 3, the low-level event sequences are replaced by high-level events to obtain an
abstracted event log: this abstracted event log can then be used, e.g., to mine a high-
level model. The sessions of each cluster can be seen as a sublog that can be used as
input for process discovery: this would discover a low-level process model of how each
high-level activity is mapped to the executions of low-level activities. The low-level
process models can then be merged with the abstract process model to in fact obtain a
hierarchical model: this is step 4. At step 5, a testing event log is used to compute the
harmonic mean of fitness and precision, and thus to assess the quality of the hierarchical
model.

Very importantly, this procedure is repeated for different parameters of the clus-
tering algorithm to tune the parameters and find the values that can guarantee higher
quality of the hierarchical model.

Note that the technique is independent of the specific clustering algorithm, but we
had to pick up, and we opted for the DBSCAN clustering algorithm in the implementa-
tion and experiments.

The remainder of this section provides further details of the different steps of the
proposed techniques.

5.1 Parallelism-based Session Creation

Algorithm 1 illustrates how sessions are created. The input is the event log L, a time
threshold ∆ and the dependency threshold Θ. In particular, Θ is used to set the mini-
mum strength for a dependency a ⇒ b to consider a and b not to be parallel: the ideal
value would be one to indicate that a and b are parallel if even once it occurs a is fol-
lowed by b and b by a. The reality is that the observed behavior can be incomplete and
noisy, and hence a certain tolerance should be accepted. Values observed in [10] are
usually between 0.7 and 0.9.
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Algorithm 1: Session Creation based on Parallelism
Data: An event log L
Data: A session time-threshold ∆, A dependency threshold Θ
Result: A set S of sessions

1 S ← ∅
2 foreach trace σ = ⟨e1, · · · , en⟩ ∈ L do
3 Trace-session set Sσ ← {⟨e1⟩}
4 for event index i=2 to n do
5 event assigned← False
6 foreach session s = ⟨f1, · · · , fm⟩ ∈ Sσ do
7 if (|λA(fm)⇒L λA(ei)| ≥ Θ) and ((λT (ei)− λT (fm) < ∆) then
8 Sσ ← (Sσ \ s)

⋃
{⟨f1, · · · , fm, ei⟩}

9 event assigned← True
10 break
11 end
12 end
13 if event assigned = False then
14 Sσ ← Sσ

⋃
{⟨ei⟩}

15 end
16 end
17 S ← S

⋃
Sσ

18 end

As illustrated in Algorithm 1, the creation is done by trace (see line 2). For each
trace σ ∈ L, a set Sσ of the sessions of σ is created to include a session that consists
of the sequence with only the first event (see line 3). In fact, a session for a trace σ is a
sequence of events of σ. The loop from line 4 to 16 iterates over all events of the trace
of length n, and adds each event ei either to an existing session or to a new session. The
inner loop from line 6 to 12 iterates over the existing sessions: if any session s concludes
with an event fm that is not parallel with ei (i.e. the dependency metrics between the
activities of events ei and fm is larger than Θ) and also the time difference between the
two events is lower than the time threshold ∆ (conditions at line 7), ei is added to fm
(see line 8) and no more sessions are considered (see break of the inner loop at line 10).
A special case is when the event is not added to any of the existing session because the
conditions at line 7 are never both satisfied. In this case, the inner loop between 6 and
12 concludes. The boolean variable event assigned stays set to false: it would become
true if and only if it is added to some session (cf. line 9 where the variable is set to true).
The condition at line 13 refers to this case: if the event is assigned to no session, a new
session is created and added to the existing set Sδ

At the end of this step, every trace is broken down into the constituent sessions,
which are then clustering as discussed in the next step.
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5.2 Clustering

This study chooses the DBSCAN to cluster sessions, as previous studies [6, 7] showed
that it yielded better results. Because the DBSCAN clustering method works with nu-
merical variables, the sessions are required to be converted into an encoded numerical
vector. The encoding creates vectors se⃝= (vx1

, · · · , vxn
) with one dimension for each

activity associated with low-level events. The set of activities for low-level events in
the log is indicated as {x1, · · · , xn}. An event e exists in some log traces such as
λA(e) = xi for each i ∈ [1, n]. The proposed algorithm implements a frequency-
based algorithm. Dimension vxk

indicates the frequency of events for activity xk in se⃝.
In other words, the algorithm creates a one-dimensional vector sizing the number of
unique events in the log. Then, it assigns 1 to the vector for the corresponding element
and 0 for the others. When the event log includes start and end timestamps for an event,
the value of vxk

should be divided by two to avoid double counting.
Clusters are visualized on the heatmap for insights into how sessions were clustered.

The x-axis refers to low-level activities, whereas the y-axis indicates clusters. The in-
tersection of the axes is colored according to the value of the dimension a in cluster
c. A value of 0 is represented as white, while 1 is given as the most intense red. The
cluster centroids (c1, · · · , ck) are normalized by dividing the sum of the centroid values
( c1∑k

j=1 cj
, · · · , c1∑k

j=1 ck
). Varying intensities of the color red represent the centroids on

the heat maps.

5.3 Creation of Abstracted Model

’Step 2 Clustering’ creates a set of clusters C = {C1, · · · , Ck} of sessions. For each
trace σ, the sequence of the sessions Sσ = ⟨s1, · · · , sm⟩ are computed. Then, low-level
activities are converted into high-level activities by abstracting traces
σH =

〈
hs
σ1
, hc

σ1
, · · · , hs

σk
, hc

σk

〉
, where hs

σi
and hc

σi
are the start and complete, re-

spectively, high-level (abstracted) events for the trace σi in the session s. Each cluster
cj ∈ C is renamed as NAME(cj) in the abstracted event log by considering the most
dominant activity in the cluster cj .

5.4 Merging Sub-cluster Models

Merging sub-cluster models is required to create a hierarchical model. This step extracts
the sub-processes associated with each high-level activity in the abstracted model and
merges them to compare the original and abstracted models. Each cluster cj ∈ C rep-
resents an event log that serves as input for mining a model that captures the behavior
of the sessions within that cluster.

Each high-level activity NAME(cj) is replaced by the model discovered from the
low-level activities that comprise the corresponding high-level activity NAME(cj). The
merging process is made by putting two invisible transitions before and after the model
discovered from the low-level activities.
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5.5 Computing Model Quality

Quality computing for a process model involves evaluating the discovered process
model’s accuracy, reliability, and usefulness. Fitness reflects how well the model aligns
with the actual execution of the process, with higher fitness values indicating a closer
match between the observed and modeled behavior [10]. Precision evaluates how ef-
fectively the model represents the actual process without oversimplifying or omitting
essential details [10]. This study calculates the harmonic means of fitness and precision,
particularly useful in situations where there are extreme values or outliers present in the
data. Because models requiring to be abstracted have mainly low precision values, the
harmonic mean balances the influence of both precision and fitness metrics.

5.6 Choosing Best Model

Choosing the best model is an iterative step that requires testing different parameter
values. The time threshold was computed as the average time difference between two
subsequent events in each trace. A time threshold set containing time threshold values
up to three times the average time difference was created. ϵ set included 0.25, 0.5 and
0.75. min samples values were computed by considering the number of activities in
the event log. A min samples set containing values up to three times the unique num-
ber of activities in the log was created. The combination of these three parameter values
was tested in each experiment.

6 Evaluation

To evaluate the effectiveness of the proposed technique, a comprehensive assessment
was conducted on a randomly generated process model characterized by high variabil-
ity. Processes and Logs Generator 2 (PLG2) was used to create a model in this study [5].
PLG2 allows to generate random process models and to create accordant event logs. It
also allows noise to be added to the event log, namely events can be randomly inserted,
deleted or swapped, at the beginning, in the middle or at the end of the log’s traces. A
user-defined parameter enables to define the amount of noise (see [5] for further details).
An implementation in Python, and the generated models and logs used in the evaluation
are available at https://github.com/onurdogannet/ParallelismbasedEventLogAbstraction.

Because PLG2 generates a log with fixed 1-hour timestamps for each consecutive
activity, we changed the timestamps randomly, considering relationships among activ-
ities. Then, the original models were discovered by Inductive Miner - infrequent (IMf)
with a noise threshold of 0.2. Model 1 includes 109 activities. The average number of
events per trace is 107.41, and the average trace duration is 18.9 hours. The average
time between two subsequent activities is 17.34 minutes, which is considered to define
the time threshold, ∆. Model 2 has 118 activities. The average number of events per
trace is 105.01, and the average trace duration is 17.96 hours. The average time be-
tween two subsequent activities is 10.54 minutes. The logs with noises were generated
by adding levels to the control flow of events. For example, a new log was generated
with the following specifications related to the control flow of events: trace missing
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Fig. 5. Quality of Model 1 in terms of the harmonic mean of fitness and precision

Fig. 6. Quality of Model 2 in terms of the harmonic mean of fitness and precision

head probability, trace missing tail probability, and trace missing episode probability.
For two models, new logs with noises were generated with the noise probabilities of
5%, 10%, 15%, and 20% for the same specifications.

Figure 5 and Figure 6 provide an evaluation of process models based on their fitness,
precision, and harmonic mean scores for the event log. The models include the baseline
and abstractions with consecutiveness and parallelism. The original models show high
fitness scores but low precision. On the other hand, abstraction techniques based on
consecutiveness and parallelism result in lower fitness scores but improved precision,
in general.

Across different session creation methods (Original, Consecutiveness, Parallelism),
there are variations in fitness. For example, in Model 1, the Parallelism variation tends
to have lower fitness compared to the Original or Consecutiveness, especially at higher
noise levels. In Model 2, the fitness of the Consecutiveness variation varies significantly
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with noise levels. It’s important to note that Model 1 generally exhibits higher fitness
scores compared to Model 2 under the same conditions and noise levels.

Precision varies across different noise levels and model names. In Model 1, the
Parallelism variation tends to have higher precision compared to the other two variations
across noise levels. In Model 2, the precision of the Parallelism variation is notably
high, especially at 10% noise level, suggesting it is better at avoiding false positives
under certain conditions.

The parallelism-based abstraction achieves a better balance between fitness and pre-
cision compared to the consecutiveness-based abstraction for both event logs, except
the event logs with 20% noise. Because both abstraction methods consider noises by
assigning them to the nearest cluster before creating the abstracted model, they gave
better results until a certain noise level. However, after a certain level of noise, ab-
straction techniques may struggle to cope with the increased variation introduced by
the noise, leading to reduced model quality. Intuitively, as the noise level continues
to increase beyond 20%, the model quality is expected to deteriorate further. At 25%
or 30% noise levels, the proportion of irrelevant events becomes even larger, making
it more challenging for the abstraction techniques to identify relevant patterns and re-
lationships. This can lead to a higher number of incorrect or misleading abstractions,
resulting in a decline in both fitness and precision.

7 Conclusion and Future Research

This paper addresses the challenges traditional process mining techniques face in deal-
ing with complex processes and low-level event data. By introducing a novel event
abstraction technique that requires limited domain knowledge, the paper offers an ap-
proach to enhance the interpretability and usability of process mining outcomes. The
proposed technique’s effectiveness is validated through different noise levels, empha-
sizing its ability to provide accurate knowledge to stakeholders. The improved inter-
pretability and usability of the abstracted process model enable users to gain valuable
insights and make informed decisions regarding process analysis, optimization, and im-
provement.

For noise levels below 20%, the abstraction techniques perform better than the not
abstracted model because they can effectively filter out some noise and separate the es-
sential patterns, resulting in improved model quality compared to the raw, unprocessed
data. The fact that parallelism is the best abstraction technique at noise levels less than
20% can be attributed to its ability to handle more diverse and complex event patterns.
Parallelism captures relationships among events that occur simultaneously, which can
be especially valuable when the noise level is low, and the patterns are more distinct.
The choice of the best abstraction technique depends on the specific characteristics and
noise level of the event log being analyzed.

For future work, we aim to apply different clustering techniques, such as hierarchi-
cal clustering, to obtain better clustering results, affecting the abstracted model’s qual-
ity. Also, parameter values of the clustering technique and time threshold for session
creation should be found algorithmically.
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