
From OCEL to DOCEL –
Datasets and Automated Transformation

Alexandre Goossens‡1 , Adrian Rebmann‡2 Johannes De Smedt1 ,
Jan Vanthienen1 and Han van der Aa2

1 Leuven Institute for Research on Information Systems (LIRIS), KU Leuven
{FirstName}.{LastName}@kuleuven.be

2 Data and Web Science Group, University of Mannheim, Germany
{rebmann|han.van.der.aa}@uni-mannheim.de

Abstract. Object-centric event data represent processes from the point of view of
all the involved object types. This perspective has gained interest in recent years
as it supports the analysis of processes that previously could not be adequately
captured, due to the lack of a clear case notion as well as an increasing amount of
output data that needs to be stored. Although publicly available event logs are cru-
cial artifacts for researchers to develop and evaluate novel process mining tech-
niques, the currently available object-centric event logs have limitations in this
regard. Specifically, they mainly focus on control-flow and rarely contain objects
with attributes that change over time, even though this is not realistic, as the at-
tribute values of objects can be altered during their lifecycle. This paper addresses
this gap by providing two means of establishing object-centric datasets with dy-
namically evolving attributes. First, we provide event log generators, which allow
researchers to generate customized, artificial logs with dynamic attributes in the
recently proposed DOCEL format. Second, we propose and evaluate an algorithm
to convert OCEL logs into DOCEL logs, which involves the detection of event
attributes that capture evolving object information and the creation of dynamic
attributes from these. Through these contributions, this paper supports the ad-
vancement of object-centric process analysis by providing researchers with new
means to obtain relevant data to use during the development of new techniques.

Keywords: Object-centric processes · OCEL · DOCEL · Log Generator.

1 Introduction

Organizations often operate in complex environments with multiple objects interacting
and participating in the same business process. To capture these different perspectives,
the concept of object-centric processes has been proposed, in which multiple object
types participate over the course of a business process [1]. In recent years, object-centric
process mining has gained increasing interest in the research community with the intro-
duction of novel event log formats such as eXtensible Object-Centric (XOC) logs [16],
Object-Centric Behavioral Constraint (OCBC) models [2], and Object-Centric Event
Logs (OCEL) [13]. Especially, OCEL is currently the most used object-centric event

‡ Joint first authors

https://orcid.org/0000-0001-8907-330X
https://orcid.org/0000-0001-7009-4637
https://orcid.org/0000-0003-0389-0275
https://orcid.org/0000-0002-3867-7055
https://orcid.org/0000-0002-4200-4937


2 A. Goossens et al.

log format with its own evaluation metrics [3], visualization tool [11] and various anal-
ysis techniques [4, 5].

However, OCEL has some limitations by design. Particularly, the relationships be-
tween objects and attributes are not strictly defined and attributes that can change in
value over time are challenging to deal with in OCEL [14]. This makes the analysis
of attribute change difficult, because it is not always clear which event or object ma-
nipulated the attribute value, e.g. whether an update event changed the quantity of an
order or the price of a product. To overcome this, there have been efforts to establish a
new format for object-centric event data such as Data-aware Object-Centric Event Logs
(DOCEL) [14]. The main aspect DOCEL introduced is the notion of static and dynamic
attributes [14]. Static attributes are attributes that do not change over the course of a
business process and can either be linked to an event or to an object. Conversely, dy-
namic attributes are attributes that can change over the course of a business process and
are linked to both an object and to an event with the use of foreign keys. As of now, no
general consensus has been reached, however, regarding the exact set of entities and re-
lationships a meta model of such a data format shall have. Currently, the Object-Centric
Event Data (OCED) is under development and will surely take into account the explicit
representation of object evolution and their attributes.1

However, despite the benefits of moving to object-centric data with dynamic at-
tributes, no datasets are available that can actually be leveraged by researchers for the
development of process mining techniques that account for such attributes. This paper
addresses this issue in two ways:
1. We propose two process-specific log generators to create customized object-centric

event logs in the DOCEL format [14], which also generate dynamic object at-
tributes, i.e., they create objects with attributes that change over time.

2. We propose an algorithm that takes an existing OCEL event log and automatically
transforms it into an event log in the DOCEL format. Combined with earlier work,
this algorithm can also be used to transform flat XES [15] logs into DOCEL logs.

The remainder of this paper is structured as follows: Section 2 motivates the need for
data sets with dynamic object attributes. Section 3 presents our log generators to create
DOCEL logs. Section 4 then describes our algorithm to transform OCEL into DOCEL
logs. Section 5 uses data sets created using our log generators to evaluate the algorithm
and shows how even real-life event data captured in XES format can be transformed
into DOCEL and thus be used for research on object-centric process mining. Finally,
Section 6 reflects on related work and Section 7 concludes the paper.

2 Motivation

Over the course of the execution of a business process, the objects involved in its ex-
ecution may undergo changes, such as creating, updating or deleting, which results in
attribute values changes throughout an object’s lifecycle. The eXtensible Event Stream
(XES) event log format, with its traditional case-based view of processes, addresses
this issue by directly linking attributes to the events that manipulate them [15]. Because

1 https://www.tf-pm.org/resources/oced-standard



From OCEL to DOCEL – Datasets and Automated Transformation 3

each event belongs to exactly one case, it is unambiguously clear which attribute was
manipulated by a specific event as well as to which trace it belongs.

However, in object-centric processes, events may refer to any number of objects [4].
In OCEL, this is implemented using an event table storing all attributes that are manip-
ulated by events and an objects table storing all objects and their (static) attributes.
Unfortunately, with OCEL it is not possible to uniquely identify to which object a dy-
namic attribute belongs, neither through its events table nor its objects table [14]. To
illustrate this, consider the event table of an OCEL log shown in Table 1 and its objects
table in Table 2, which cover the (simplified) handling of two orders. First, an order is
created, then the ordered items are picked, before they are sent. Between creating an
order and sending items, orders can be updated, i.e., items may be added or removed.
Besides the common EventID, Activity, and Timestamp attributes and the references
to the instances of different object types associated with each event, the log contains
an additional event attribute, Value. While this attribute is associated with events, it is
clear that it actually refers to objects. Specifically, it refers to the current value of the
order the event is associated with. This is left implicit by the OCEL format making it
impossible for automated process analysis techniques to properly leverage this infor-
mation. For instance, by looking at event e6, it is unclear whether the Value refers to the
current value of the order or the value of the item that is removed. This makes analyzing
attribute changes in object-centric business processes difficult using OCEL.

ID Activity Timestamp Orders Items Value

e1 Create order 05-20 09:07 {o1} {i1, i2} 100
e2 Pick items 05-23 14:20 {o1} {i1, i2} 100
e3 Create order 06-03 19:17 {o2} {i3} 60
e4 Pick items 06-04 15:20 {o2} {i3} 60
e5 Update order 06-04 18:11 {o1} {i1} 70
e6 Remove item 06-05 11:48 {o1} {i2} 70

Table 1: Events of an OCEL log.

Type Instances

Orders {o1,

o2}

Items {i1(Weight: 24),
i2(Weight: 99),
i3(Weight: 10)}

Table 2: Objects of the log

The DOCEL format addresses this issue with the notion of static and dynamic at-
tributes. Static attributes do not change over the course of a business process, whereas
dynamic object attributes can change value over the course of a process and are linked
to both an event and an object. For instance, consider the running example, where or-
ders have a Value attribute. If an order changes during its lifecycle, i.e., between its first
and last occurrence in the execution of a business process, e.g., because items are added
later on, the value attribute changes. DOCEL explicitly links this change to the order
itself and the event that caused it. Unfortunately, despite the increased interest in object-
centric processes, there are currently no event logs available describing processes with
dynamic attributes nor are there tools available to generate such object-centric logs.

3 DOCEL Dataset Generators

This section introduces the DOCEL log generators for two artificial, yet realistic pro-
cesses. First, we introduce the two processes that are simulated by the log generators.



4 A. Goossens et al.

Table 3: Object types order-to-delivery process
Object Type Static Attributes Dynamic Attributes
Customer Name, Bank Account Customer Address
Order / Weight, Order Price
Product Type Product Name, Price, Weight /
Item Price, Weight /
Packages Price, Weight /

Table 4: Object types shipping-method process
Object Type Static Attributes Dynamic Attributes
Customers Name, Bank Account /
Product Type Value, Fragile /
Orders Quantity Value, Refund, Shipping Method

These processes contain dynamic attributes as well as various AND and OR-gateways,
and loops, which are also found in real-life processes. Second, we explain the log gen-
erators and their tunable parameters.

3.1 Process descriptions

In this section, we describe the processes that serve as a basis for our log generators.
The process models can be found alongside the Python notebooks that implement the
generators2. In this paper, we limit ourselves to a textual description for space reasons.

Order-to-delivery process The order-to-delivery process3 contains 5 object types and
various attributes that we summarize in Table 3.

The process starts with the customer adding items to an order which increases the
value and the weight of an order. Each item is of a certain product type and inherits
its weight and price. Once the order is placed, the items are picked. Before paying the
order, the customer is still allowed to remove items from an order. If that is the case, the
items are removed and the value and weight of an order are updated. Once the order is
paid, the package is created with a weight and price and sent out. However, a customer
might change their delivery address in which case the delivery fails and has to be re-
executed. Moreover, every delivery has a very small chance of failing due to unforeseen
circumstances. Once the package is successfully delivered, the process ends.

Shipping-method process The shipping-method process covers orders that have dif-
ferent shipping modes depending on various factors. It is based on the process described
in [8] and contains three object types whose attributes are summarized in Table 4.

A customer places an order with a quantity for each product type. This is then re-
ceived by the company which has to manually confirm the purchase at which point the
value of the order is also determined. Once the purchase is confirmed, the products
are retrieved from the warehouse and added to the package. In case, the product type

2 Available at https://github.com/a-rebmann/ocel_to_docel/tree/main/notebooks
3 This process is based on the running example OCEL log available on ocel-standard.org

https://github.com/a-rebmann/ocel_to_docel/tree/main/notebooks
ocel-standard.org


From OCEL to DOCEL – Datasets and Automated Transformation 5

is fragile (indicated with a binary value), the product is first wrapped with some pro-
tection. Next, the customer has to confirm the shipping information, after which the
shipping method is determined. If the package contains a fragile product or its value
exceeds a certain amount, the package is shipped with a courier. Otherwise the package
is shipped by mail. Simultaneously, an invoice is sent to the customer. Once the package
has arrived, the customer determines their satisfaction. If the customer is satisfied the
process is ended after the order has been filed. In case, the customer is dissatisfied,
the customer requests a refund, setting the binary refund value to 1. Next, the customer
confirms the shipping information, which will be handled using an express courier. The
company sends a recollect letter after which the customer returns the package. Once the
package is returned, the company refunds the customer. Once the package has arrived,
the customer determines their satisfaction (assumed to be positive here) after which the
order is filed and the process ends.

3.2 Log Generators

To allow the research community to generate as many different logs as desired for
different research needs, we propose log generators that allow users to change various
parameters that influence the generated logs, as summarized in Tables 5 and 6. In both
log generators, it is possible to change the amount of object instances of all the object
types involved in the process as well as changing the time between events and initial
time frame of a process. Beyond that, it is possible to change various probabilities of
events happening in the process such as removing an item or asking for a refund. Both
log generators can generate DOCEL logs in a spreadsheet format, which is intuitive
to understand because every table (events, objects and dynamic attribute tables) can
be stored in a separate sheet. Note that, because we provide the generators as Python
notebooks, it is possible to change the logs beyond the options described in the tables
with some minimal Python coding.

Finally, to be able to evaluate our automated OCEL-to-DOCEL transformation algo-
rithm (cf .Section 4), we also included the option to create an OCEL log for a generated

Table 5: Summary of functionality in the order-to-delivery Log Generator
Tunable parameter Description of Functionality
Customer Addresses and Names Randomly generated for each log entry along with randomly generated bank

account details.
Products Taken from a fixed list directly obtained from the OCEL log of X.
Start Timeframe Allows defining the start time for the process.
Time Between Events Allows adjusting the time interval between consecutive events.
Number of Orders Can be changed to generate logs with varying numbers of orders.
Max Number of Products Can be adjusted to set a maximum limit for the number of products in an order.
Max Number of Items Can be modified to set a maximum limit for the total number of items in an

order.
Probability of Removing an Item Can be adjusted to control the likelihood of an item being removed from an

order. The higher the value, the more likely an item is removed.
Probability of Changing an Address Allows changing the probability of an address being modified in the log entries.

The higher the probability, the more likely the address will be changed.
Probability of Failing a Delivery Can be altered to control the likelihood of a delivery failure occurrence. The

higher the probability, the more likely the probability will be changed.



6 A. Goossens et al.

Table 6: Summary of functionality in the shipping method log generator
Tunable parameters Description of Functionality
Number of Products Allows adding new products with custom values for the price and the possibility

of fragility.
Number of Customers Enables creating new customers with randomly generated names and bank ac-

counts.
Lists of People Executing Activities Allows adapting the lists of people who execute the company’s activities.
Start Timeframe Allows defining the start time for the process.
Time interval Between Events Allows adjusting the time interval between consecutive events.
Order Value Threshold Can be changed to determine the shipping method based on the order’s value.
Number of Orders Can be changed to generate logs with varying numbers of orders.
Probability of Refund Can be adapted to determine the likelihood of a refund, indicating customer sat-

isfaction with the purchase. The higher the value the more satisfied the customer
is.

DOCEL log. If OCEL logs are created, the dynamic attributes are directly linked to the
events, therefore, losing the clear information on object-attribute allocations.

4 Transforming OCEL to DOCEL

This section presents our proposed algorithm to transform an OCEL event log into a
DOCEL formatted one, achieved by detecting dynamic object attributes and assigning
them to the appropriate object instances. Our algorithm takes as input an OCEL format-
ted event log L, which comprises a set of events recorded by an information system.
Each event e ∈ L is a tuple e = (eid, act, ts, OI,AV ), with eid the event’s id, act its
activity, ts its timestamp, OI a set of object instances, and AI a set of attribute-value
pairs. Each object instance oi ∈ OI is a tuple (oid, type), where oid is the instance’s
identifier and type its type, whereas each attribute-value pair (a, v) ∈ AI relates an
attribute value v to an attribute name a. We denote the set of object types that occur in
L as OL

T and the set of event attribute names as AL
T .

As visualized in Fig. 1, our algorithm applies two steps to transform an OCEL log
L into a DOCEL formatted log L′. Step 1, Dynamic object attribute detection, aims to
detect dynamic object attributes in the event attributes of the input log and match them
with the object type they refer to. Based on that matching, Step 2, Dynamic-object-
attribute-to-object assignment, creates object attributes and associates these with the
individual object instances they relate to, establishing a DOCEL log that makes these
relationships explicit. In the remainder of this section, we describe these steps in detail.

Fig. 1: Algorithm overview.

4.1 Dynamic object attribute detection

This step aims to determine whether an attribute a ∈ AL
T is a dynamic object attribute

of an object type t ∈ OL
T , resulting in a set of attribute-object-type matches M .



From OCEL to DOCEL – Datasets and Automated Transformation 7

For this step, recall that dynamic object attributes are attached to events in the OCEL
format, even though they capture information about an object associated with an event
rather than relate to the event itself. For instance, although an Update order event has a
Value attribute in Table 1, this attribute actually captures the (new) value of the order,
not of the event.

Identifying candidate object types. For each attribute a ∈ AL
T , our algorithm first

identifies a set of candidate object types Oa ⊆ OL
T . To determine if an object type t ∈

OL
T is a candidate type for attribute a, our algorithm checks if it meets two requirements:
– Object-attribute co-occurrence: First, our algorithm checks if every occurrence of

attribute a can be related to exactly one instance of object type t. This means that
L cannot contain an event e for which (a, v) ∈ e.AV and for which e.OI either
does not contain any object instance of type t or contains multiple of them. For
instance, for the running example type item is not a candidate for attribute Value,
since events e1 and e2 each refer to two items, but only contain a single Value.

– Observed attribute changes: Second, our algorithm checks if attribute a is actually
dynamic (with respect to type t), i.e., if its value is observed to change during an
object’s lifecycle. For this, our algorithm checks if L contains (at least) two events,
e and e′, which both contain the same object instance of type t, but are associated
with different values for attribute a.

Any object type t that passes both checks is added to the set of candidate object types
Oa. If, after checking all object types in OL

T , Oa contains exactly one candidate type t,
the match (a, t) is added to M . Instead, if Oa does not contain any candidates, then a is
not a dynamic attribute, whereas, if Oa contains more than one candidate, our algorithm
turns to the disambiguation procedure described next.

Disambiguating candidate types. An attribute a can have multiple candidate object
types in Oa if certain object types always occur together for events. For example, if
every event in a log L is associated with both a customer and an order, an attribute such
as Value would have both of these types as a candidate, since each occurrence of Value
can be associated with exactly one customer and one order.

To be able to match a to a single object type t ∈ OA in such cases, our algorithm
employs two disambiguation strategies:

– Relation-based selection: Our algorithm first checks for 1:N relationships between
object types in Oa, aiming to assign a to a more fine-granular candidate object
type. For illustration, consider a Refund attribute and two object types, customer
and order in ORefund. All events with a value for Refund refer to one customer
and one order. Matching Refund to customer would obfuscate the relation between
single orders and their Refund if a customer places multiple orders. Therefore, the
algorithm tries to identify cases for each t ∈ Oa, where for two events e1, e2 ∈ L
an instance oit of t occurs together with two different instances oit′1 and oit′2 of
another type t′ ∈ Oa and, if so, removes t from the candidates. If a single candidate
t remains, the match (a, t) is added to M .

– Name-based selection: If, after the relation-based selection, Oa still contains more
than one candidate, our algorithm finds the most similar object type among the can-
didates based on a’s name. For this, our algorithm quantifies the semantic similarity
sim(a, t) ∈ [0, 1] between a and each type t ∈ Oa by computing the cosine sim-



8 A. Goossens et al.

ilarity between sentence embeddings, obtained from a pretrained Sentence Trans-
former [18]. These embeddings are specifically designed to capture semantically
meaningful representations on the level of (short) sentences rather than individual
words, making them highly suitable for our purpose.
Given these similarity scores, our algorithm determines if there is a type t ∈ Oa for
which the similarity score is distinctly higher (according to a threshold τ , set to 0.1
by default) than the scores of the other types, i.e., if sim(a, t) > sim(a, t′) + τ for
each t′ ∈ Oa \ {t}. If such a distinctively similar type t is found, the match (a, t)
is added to M , otherwise a is not matched to any object type.

The set of attribute-object-type matches M then serves as input to the next step.

4.2 Dynamic-object-attribute-to-object assignment

Based on each match (a, t) ∈ M , Step 2 creates an object attribute a(e,oi) = (vid, eid,
oid, a) for each event e that changes oi’s value for a. The algorithm first assign a(e,oi) a
unique identifier a(e,oi).vid. Then it sets its attribute-value pair, a(e,oi).a = (a, v) with
(a, v) ∈ e.AI , its event identifier, a(e,oi).eid = e.eid, and its object instance identifier,
a(e,oi).oid= oi.id with oi ∈ e.OI∧oi.type = t. For the attribute Value of our running
example, this creates the object attribute table visualized in Table 7.

Table 7: Value attribute table.

ValueID OrderID EventID Value

v1 o1 e1 100
v2 o2 e3 60
v3 o1 e5 70

Finally, the algorithm removes the attributes
for which a match was found from the events’
set of attribute-value pairs and returns the estab-
lished DOCEL log. For the example, it would,
therefore, remove the Value attribute from the
events in Table 1 and return the resulting event
table, the unchanged objects table, and the newly
created object attribute table (Table 7).

5 Evaluation

We implemented our algorithm in Python and performed evaluation experiments to as-
sess our algorithm’s capability to accurately transform OCEL logs into DOCEL logs
(Section 5.1). Afterwards, we show how it can be used in combination with an existing
approach to also transform XES event logs into DOCEL logs (Section 5.2). The imple-
mentation, evaluation data, and generated DOCEL logs are available in our repository4.

5.1 Experiments

We assess whether our algorithm is able to correctly detect the dynamic attributes in an
OCEL log and transform it into a DOCEL log.

Datasets. We use OCEL and DOCEL event logs generated using our log generators (cf.
Section 3) by simulating the process execution for 100 orders per scenario. The OCEL
logs serve as input to our algorithm, whereas the DOCEL logs serve as a gold standard,



From OCEL to DOCEL – Datasets and Automated Transformation 9

Table 8: Characteristics of the OCEL logs used for the evaluation
ID # Events Objects # Event att. # Dyn. att.

Order to 6,014 Customer (44), Order (100), Item (3,559), 7 3
Delivery Packages (100), Product Type (20)

Shipping 2,036 Customer (50), Product Type (3), 5 3
Method Order (100)

i.e., the correct transformation result. The OCEL logs obtained in this manner differ in
their number of events, objects, object types, and attributes as shown in Table 8.

Setup. To assess the ability of our algorithm to correctly detect dynamic object at-
tributes in the OCEL event logs, we conduct experiments using two settings:
(1) Original attribute names. In this setting, we use all information from the event log
as input to our approach.
(2) Hidden attribute names. To assess the robustness of our algorithm, we reduce the
available information by hiding event attribute names in the OCEL logs. This allows us
to assess the dependency of our algorithm on its name-based check (Section 4.1).

We measure the performance in terms of precision, recall, and F1-score with respect
to the dynamic object attributes in the original DOCEL logs. Using tp to denote the dy-
namic attributes correctly matched to an object type fp for the dynamic attributes incor-
rectly matched to an object type, and fn for the dynamic attributes that were wrongly
not matched to an object type, we then quantify the precision as tp/(tp+fp), the recall
as tp/(tp+ fn), and F1-score as the harmonic mean of precision and recall.

Results. We first report on the results of attribute-to-object-type matching, which is the
most challenging part, before we report on the attribute value to object assignment.
Attribute-to-object-type matching. Table 9 reports on the results of the attribute-to-
object-type matching per event log.

Table 9: Results of the attribute-to-object-type matching per OCEL log.
Log Original Attribute Names Hidden Attribute Names

Count Precision Recall F1 Count Precision Recall F1

Order to delivery 3 1.00 1.00 1.00 3 1.00 0.75 0.86
Shipping method 4 0.80 1.00 0.89 4 0.80 1.00 0.89

Average 3.5 0.90 1.00 0.95 3.5 0.90 0.88 0.88

We find that our approach achieves a perfect recall and good precision (0.9) in de-
tecting dynamic object attributes and associating these with the correct object type,
when all original information from the input log is available. An in-depth look shows
that the only error made is the assignment of the Resource attribute of shipping-method
process to the order type. While unconventional, this assignment is not necessarily
problematic, since indeed each time a resource executes a process step, that step relates
to a specific order. Such incorrect assignments could be easily avoided by specifying a
set of names reserved for event attributes, e.g., org:resource or org:role as done in XES

4 https://github.com/a-rebmann/ocel_to_docel

https://github.com/a-rebmann/ocel_to_docel


10 A. Goossens et al.

logs [15]. The importance of the duplicate-resolution strategy based on object lifecy-
cles becomes clear for the shipping-method process, where customer and order are in
1:N relation. Without it, e.g., the Refund attribute would be matched to both customer
and order. This strategy resolves this, correctly matching Refund only to the order.
Note that the name-based matching strategy could not resolve this, because refund is
semantically similar to both customer and order.

When hiding the original attribute names, we find that for shipping-method process
the performance remains the same, whereas for order to delivery it drops achieving
an F1-score of 0.86 compared to 1.00 with original attribute names. The reason for
this is the missing match of the Customer Address attribute to the customer object
type, because the candidates order and customer could not be resolved solely using the
relation-based disambiguation in this case.
Object-attribute-to-object assignment. We also report on the results of Step 2, i.e., the
assignment of object-attributes to objects, for the setting with original attribute names.
We provide results for (1) when propagating false positives from Step 1 and (2) when
only including object attributes that were correctly matched to object types in Table 10.

Table 10: Results of the dynamic-object-attribute-to-object assignment per OCEL log
for the setting with original attribute names, with and without propagation of false pos-
itives (fps) from Step 1.

Log When propagating fps Without propagating fps
Count Precision Recall F1 Count Precision Recall F1

Order to delivery 3,710 1.00 1.00 1.00 3,710 1.00 1.00 1.00
Shipping method 1,886 0.23 1.00 0.37 442 1.00 1.00 1.00

Average 2,798 0.62 1.00 0.69 1,875 1.00 1.00 1.00

We find that when propagating false positives (fps) from Step 1, we achieve an aver-
age F1-score of 0.69, a precision of 0.37, and a perfect recall (1.00). The lower precision
is caused only by the assignment of the Resource attribute to the order object type for
the shipping-method event log. Given that there are many more resource handovers in-
volved than value changes to the actual object attributes this has a considerable impact
on the overall performance scores. Apart from this, we achieve perfect scores, though.
This can also be seen when disregarding false positives from Step 1. In this case, we
achieve perfect scores for the assignment of object attributes to objects.

5.2 Application: From XES to DOCEL

Recently an approach was proposed to uncover object-centric data in a flat event log,
e.g., in XES format, to automatically transform it into a log OCEL format [17]. Given
the limitations of OCEL, we aim to combine our algorithm with this approach to inves-
tigate whether XES logs can be transformed into DOCEL.

To this end, we use the BPI Challenge 2017 log [9], which captures the loan applica-
tion process at a financial institute and involves two main types of objects: applications
and offers. For a single application, multiple offers can be made, where at some point an



From OCEL to DOCEL – Datasets and Automated Transformation 11

offer may be accepted. To make sure we have a dynamic object attribute in this log, we
add an OfferAccepted attribute to each event, which is set to false when a new appli-
cation is created and changes to true, when an offer associated with the application is
accepted. The goal is to check if our algorithm can identify this attribute correctly as a
dynamic object attribute associated with the application object type creating a DOCEL
log from the output of the XES-to-OCEL approach.

When applying our algorithm to the transformed XES log, we find that it indeed
correctly matched the OfferAccepted attribute to the application. Based on that it re-
moved the corresponding event attributes and created correct object attributes linked to
both the correct application and the event that writes the value. Beyond detecting the
derived attribute correctly, the algorithm also detected the EventOrigin and the Action
attributes as dynamic object attributes of the application object type. After inspecting
the attribute values, the latter of these matches makes sense, because Action captures
the status of the application, which changes throughout its lifecycle. EventOrigin, as
its name indicates, captures the origin of the event and was, therefore, falsely associ-
ated with application. Nevertheless, this outcome shows the potential of our algorithm
to help generate a broader variety of object-centric event logs that consider evolving
objects based on available event data. The DOCEL log our algorithm created can be
found in our repository linked on Page 8.

6 Related Work

The first proposed object-centric event log formats are XOC logs [16] together with
OCBC models [2]. These proposals have scalability issues because of the duplication
of attributes and object relations with each executed event. Next, OCEL logs were in-
troduced which do not have such scalability issues and are currently the most used
object-centric event log format [13] with a lot of dedicated research and tools such as
a visualization tool [11], fitness and precision metrics [3], clustering analysis [12], or
predictive object-centric process analysis [10].

The conversion of XES logs to OCEL logs has been investigated in [17]. Next to that
a generic approach to extract OCEL logs from SAP systems and relational databases
has also been researched in respectively [7] and [6]. Finally, the extraction of OCEL
logs from virtual knowledge graphs was researched in [19].

7 Conclusion

This paper offers two problem-specific log generators and a transformation algorithm
to the research community. The two paramaterizable log generators support both the
widely used OCEL format and the more recent DOCEL format, which allows for dy-
namic attributes and consistent object-attribute allocation. To further support the cre-
ation of DOCEL logs, we also proposed an algorithm to convert OCEL logs to DOCEL
logs. This algorithm not only identifies the presence of dynamic attributes, which are
better represented in the DOCEL format, but also links the attributes to the correct ob-
ject types. Our evaluation shows that the algorithm can accurately transform OCEL into



12 A. Goossens et al.

DOCEL logs and that, in combination with previous work, it can even be used to con-
vert XES logs to DOCEL logs. However, it cannot deal with all situations. For instance,
if multiple instances of the same object type are changed by one event (batching), this
cannot be handled if these instance have not previously been changed individually.

In the future, we aim to address this limitation. We also plan to develop a com-
prehensive user interface tool to enhance the user experience. Furthermore, we aim to
transform additional XES logs that would benefit from a conversion to DOCEL logs.

References
1. van der Aalst, W.M., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: A framework for

lightweight interacting workflow processes. International Journal of Cooperative Information
Systems 10(04), 443–481 (2001)

2. van der Aalst, W.M., Li, G., Montali, M.: Object-centric behavioral constraints. arXiv
preprint arXiv:1703.05740 (2017)

3. Adams, J.N., van der Aalst, W.: Precision and fitness in object-centric process mining. In:
2021 3rd International Conference on Process Mining (ICPM). pp. 128–135. IEEE (2021)

4. Adams, J.N., Schuster, D., Schmitz, S., Schuh, G., van der Aalst, W.M.: Defining cases and
variants for object-centric event data. arXiv preprint arXiv:2208.03235 (2022)

5. Berti, A.: Filtering and sampling object-centric event logs. arXiv preprint arXiv:2205.01428
(2022)

6. Berti, A., Park, G., Rafiei, M., van der Aalst, W.: A generic approach to extract object-centric
event data from relational databases (2023)

7. Berti, A., Park, G., Rafiei, M., van der Aalst, W.M.: A generic approach to extract object-
centric event data from databases supporting SAP ERP. Journal of Intelligent Information
Systems pp. 1–23 (2023)

8. De Smedt, J., Hasić, F., Vanthienen, J.: Towards a holistic discovery of decisions in process-
aware information systems. In: Business Process Management. LNBIP, Springer (2017)

9. van Dongen, B.: BPI Challenge (2017). https://doi.org/10.4121/uuid:5f3067df-f10b-45da-
b98b-86ae4c7a310b

10. Galanti, R., de Leoni, M., Navarin, N., Marazzi, A.: Object-centric process predictive ana-
lytics. arXiv preprint arXiv:2203.02801 (2022)

11. Ghahfarokhi, A.F., van der Aalst, W.: A python tool for object-centric process mining com-
parison. arXiv preprint arXiv:2202.05709 (2022)

12. Ghahfarokhi, A.F., Akoochekian, F., Zandkarimi, F., van der Aalst, W.M.: Clustering object-
centric event logs. arXiv preprint arXiv:2207.12764 (2022)

13. Ghahfarokhi, A.F., Park, G., Berti, A., van der Aalst, W.M.: OCEL: A standard for object-
centric event logs. In: ADBIS. pp. 169–175. Springer (2021)

14. Goossens, A., De Smedt, J., Vanthienen, J., van der Aalst, W.: Enhancing data-awareness of
object-centric event logs. In: ICPM Workshops (2022)

15. Günther, C.W., Verbeek, H.M.W.: XES standard definition. IEEE Std (2014)
16. Li, G., Murillas, E.G.L.d., Carvalho, R.M.d., van der Aalst, W.: Extracting object-centric

event logs to support process mining on databases. In: CAiSE. pp. 182–199. Springer (2018)
17. Rebmann, A., Rehse, J.R., van der Aa, H.: Uncovering object-centric data in classical event

logs for the automated transformation from XES to OCEL. In: BPM. pp. 11–16 (2022)
18. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-

networks. In: EMNLP. ACL (11 2019)
19. Xiong, J., Xiao, G., Kalayci, T.E., Montali, M., Gu, Z., Calvanese, D.: Extraction of object-

centric event logs through virtual knowledge graphs. In: 35th International Workshop on
Description Logics, DL 2022, Haifa, Israel, August 7-10, 2022 (2022)

https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b

	From OCEL to DOCEL – Datasets and Automated Transformation 

