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Abstract. Process Mining is getting a growing interest in many con-
texts where performance bottlenecks are critical for the business. Un-
fortunately, real cyber-physical systems are usually not implemented to
easily address these techniques. One of the most frequent problems to
face is transforming acquired data, often heterogeneous and unlabelled,
to allow the application of Process Mining technique. In this study, we
propose an automatised and unsupervised methodology for extracting
CaseIDs from an unlabelled event log. The proposed detection of Ca-
seIDs is based on the definition of appropriate heuristic metrics, able to
highlight the correlation between events that are part of the same pro-
cess instance, according to temporal and semantic features (e.g., kinds
of functionally-related devices, topological distance, etc.). These features
constitute the inputs for a clustering technique, which has been used to
extract different cases. The performance of the proposed methodology
was evaluated on a real diagnostic management system to support the
decisions in maintenance operations in railway infrastructures.

Keywords: Unlabelled Event Log · CaseID detection · Event Data ·
K-Means Clustering · Predictive Maintenance · Railway Infrastructure

1 Introduction

The massive use of information technologies and the development of the Inter-
net of Things (IoT) have produced a huge amount of data in different contexts:
from smart cities to Industrial Internet of Things (IIoT) and Supervisory Con-
trol And Data Acquisition (SCADA) systems. This change is driving the need
to extract valuable insights from this data. Nowadays, Data Mining is a mature
body of knowledge and methods, proposing new techniques applicable to real-
life problems. Process Mining (PM) is affirming as one of the most valuable set
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of techniques able to extract explicit, useful knowledge from real data, bridging
computational intelligence and process modelling [20]. PM has found multiple
applications throughout the years [9]. Critical infrastructures like transportation,
public health, and telecommunication networks can enhance their reliability and
security with the support of PM. The extracted models offer monitoring capabil-
ities, detecting anomalies and cyber-attacks. They also enhance understanding
of system criticality, boosting resilience, and reducing vulnerabilities [14].
The event logs constitute the starting point for PM: an event log involves a set
of cases, stored in a multiple-record table. Each case is a sequence of events ex-
ecuted in a single process instance. Each record has a precise structure in which
the key attribute groups are clearly prescribed. First, all the events belonging to
the same case are marked by a CaseID, which constitutes one of the discriminant
features of an event log. Moreover, an event is, usually, characterized by other
attributes such as a timestamp, a corresponding activity, and some resources
involved in the logged event [17]. However, this well-defined data structure is
difficult to meet in real-world applications [5, 15]. One of the most discussed
issues in the literature is CaseID detection, i.e., the identification of events be-
longing to the same case: the event logs in which the values of this attribute are
not a-priori determined are named unlabelled event logs [2]. Erroneous or invalid
values of CaseID can damage the accuracy and reliability of the model [8].
This work is framed in Cyber-Physical Systems (CPSs) domain. Such systems
are often characterized by a high level of heterogeneity and coexistence of peo-
ple, legacy hardware and software, and natural and external events that affect
the performance and availability of the systems themselves. As an example, if
we consider a smart building, many of the different interactions between the
users and the building itself cannot be accurately tracked. To this aim, having
a post-processing tool able to understand which events are related to the same
case, is of paramount importance to effectively run PM algorithms.
Several approaches can be adopted to detect appropriate CaseIDs in an unlabeled
event log. [4, 11, 15]. In this paper, we introduce a heuristic-based methodology
for the determination of CaseIDs in unlabelled datasets, necessary to define a
PM model. In particular, we propose the application of a specifically addressed
clustering technique in an unsupervised approach. The core of this methodol-
ogy is the definition of metrics, based on heuristics that model guidelines and
insights provided by domain experts. In this context, the CaseID represents a
system failure - i.e. a sequence of faults that are correlated and lead to the de-
livery of an incorrect service. The metrics, that quantify the distance between
couples of events, are designed in order to catch the characteristics of a process
instance (for example the time frame, the location of the faults’ chain in the
infrastructure or the functional dependencies among the components involved)
hidden among the events’ attributes. A case study considering a monitoring sys-
tem for transportation and distribution infrastructures is used to demonstrate
the potentiality of the proposed methodology. In detail, railway infrastructure
monitoring is used as a test bench for the approach.
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The rest of the paper is organized as follows. Section 2 describes the main
existing approaches of CaseID detection for PM processes. Section 3 describes
the proposed methodology to determine these cases automatically, while Section
4 describes its application to a concrete monitoring system. Conclusions are
drawn in Section 5.

2 Related work

Recently, PM has found several applications in different fields involving real-
life contexts from business informatics to critical infrastructures, moving from
academia towards the industry. Many scientific papers consider the event logs
already structured and labelled. However, in real-life problems, it may be diffi-
cult to have event logs properly defined with all the key attributes [17]. Hence,
the pre-processing constitutes a fundamental phase to achieve an accurate and
reliable analysis [13]. The quality of the input, in fact, affects the performances
of the algorithms, the readability of the process model and the interpretation of
the results [7, 13].

In [2], an approach called Deduce Case IDs (DCI) has been introduced, which
oversees generating labelled events from cyclic processing defined by a relation
matrix derived from the process model. In [8], the authors propose an approach
for identifying a CaseID, knowing only the sequence of the activities. Bayomie
et al., propose an approach that infers the CaseID by solving a multi-level opti-
mization problem, using the fitness metrics calculated from the unlabelled logs
and the process model, and looking for the nearest optimal correlated log [3].
Other authors extract this knowledge using association rules and defining cost
functions on the base of these rules [4]. However, all these approaches require in-
formation about the performed activities and how they are related in the model
to build. All the described inputs could be unavailable in real case studies, espe-
cially if considering a complex CPS. In fact, in this class of systems, people and
things interact together, letting complex behaviours emerge. In these situations,
the mechanism of labelling each action with a specific CaseID is often unfeasible.

In the literature, there are also some works providing methodologies that do
not require a process model as input: in [5], the authors define a methodology for
CaseID detection, based on the correlation between different activities that show
the same values for that so-called decorative attributes -i.e. that are not strictly
required for applying PM technique- of the event logs. Although they start from
the assumption that the CaseID is a combination of these attributes and their
values depend on the type of activity in the respective log entry. Lichtenstein et
al., instead, propose an approach where the CaseID is identified in an unlabelled
event log without any information about the process model. They introduce a
strategy based on the division of the event log into several classes of data models
defined by an activity-attribute relationship diagram [11].

Most of the studies existing in the literature propose methodologies that,
starting from a model or from the known relationship among activities, leverage
knowledge about the process itself, building tools for inference using a supervised
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approach. We should assume that in a real context, we could not be aware of
these specific details as in the case study proposed.

In this study, we propose a bottom-up strategy: starting from every single
event, a set of events is clustered in different cases using some metrics defined
considering guidelines that enhance the meaning of the domain attributes. In
other words, the strategy proposed is formulated without using any supervi-
sion by a process model or any kind of control flow, although guided by some
knowledge of the domain experts able to catch the peculiarities of the considered
domain.

3 Methodology

The proposed methodology aims at identifying an automatised and unsupervised
way, based on domain-oriented heuristics, to extract CaseIDs from an event log
where they are not provided. The heuristics should be defined with the support
of domain experts. Before describing such an approach, a general introduction
of the application domain is due. Fig. 1 puts at the centre of the study a com-
munication network, composed of Network Agents that are the elements (e.g., a
router, a switch, a Base Transceiver Station (BTS) in case of wireless commu-
nication) of the network enabling the communication of domain-specific ends.
Examples of these ends are trains, trackside controllers, rail switches (railway);
smart Heating, Ventilation and Air Conditioning (HVAC), lighting systems, con-
nected healthcare equipment (smart hospitals); infotainment car systems, road-
side equipment, Smart Road Centres (smart vehicles).

Network
Agent

Monitor

Database

diagnostic
info

FT
events

Fig. 1: Monitored system structure.

As these systems are in operation, the interaction between such elements
solicits the Network Agents that exchange messages according to the adopted
communication protocol. To monitor the correct functioning of the network, a
Monitor is responsible for periodically polling Network Agents and for auditing
for specific diagnostic messages detecting failures or performance degradations.
The Monitor is responsible for populating an On-line Transaction Processing
(OLTP)-level Database (DB) (i.e., the Database) with these Fault Tolerance
(FT)-related events. Among these events, there are faults, system failures, per-
formance degradation, repair actions, and returning to full operation.
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Based on the schema, this work proposes the workflow depicted in Fig. 2,
which is divided into four phases. Starting from the Database, two preparatory
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Data
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Time-stamp Id Res Opr

1 2022-12-3 5:55 AC3 1 56

2022-12-5 7:55 ZS5 4 78

2022-12-5 6:55 ZS5 4 22

....
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Domain
Experts

Definition
of Metrics
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Mining

Fig. 2: The proposed workflow.

phases are related to the extraction of valuable features from the Database it-
self into a dataset on which proper visualisation actions are performed. These
phases are respectively Dataset Extraction and Data Visualization, and they are
performed to capture evident relationships between the considered features and
could be used to reduce the dimensionality of the problem. Other useful actions
could be performed in synergy (e.g., Principal Component Analysis (PCA) and
T-distributed Stochastic Neighbour Embedding (t-SNE)).

Another important effect of the Data Visualization phase is to design a con-
crete playground for the definition of heuristics by the Domain Experts. The
reduction of the dimensionality allows the domain expert to address the most
relevant aspects on which heuristics metrics could be defined, as it will be soon
explained in detail. The Case Detection phase, which is the core of the present
research, aims at inferring the cases from both the considered dataset and the
metrics determined by the Domain Experts. A process instance is meant as a
system failure and the metrics are defined to measure similarity between events
in terms of process features. The output of such a phase is a labelled event log,
in which correlated faults have the same CaseID. The last phase, the Process
Mining, applies common PM algorithms and toolchains to extract readable and
explicit models of the Predictive Maintenance (PdM) models.

3.1 The Case Detection Phase

The basic steps constituting the CaseID Detection are depicted in Fig.3: first
of all, the entities and relations are identified, resulting in the definition of the
methodology formal model. In detail, let D = {d1, d2, . . . , dm} be the set of the
monitored devices, and let E = {e1, e2, . . . , en} be the set of the events of interest.
Let us define A = {a1, a2, . . . , ak} a set of attributes characterizing the devices.
In this way, each device di is characterized by a set of values for each attribute
in A. The function R, defined according to Eq. 1, is a non-bijective function
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Fig. 3: The Case Detection phase workflow.

that relates events and devices; in fact, some devices may not be involved in any
event as well as in many events.

R : E → D (1)

Eq. 2 defines another function, which assigns a timestamp to every event;
this function is not bijective, since more than one event could occur at the same
time. The range of this function is the set of real numbers because the timestamp
is meant as its conversion to a float number.

T : E → R (2)

For each as ∈ A, a function φas
is defined as in Eq. 3.

φas
: D → ϑ(as) ⊆ R (3)

ϑ(as) is the set of all the possible values for the attribute as. φas
(di) is then

used to assign actual values to the device di for the attribute as.
Indeed, the core of the entire approach consists of the definition of a domain-

aware metric, quantifying the distance between two events in terms of process
instance’s attributes, such as time frame or location of the failure in the infras-
tructure. It is possible to define:

m : E × E → R | (ei, ej) → mi,j (4)

where the m function is used to build the distance matrix M , and mi,j =
m(ei, ej) for all i, j ∈ {0, . . . , n}. It is important to underline that despite being
very general, this formalization allows the definition of metrics that should quan-
tify the crucial aspect of the specific application domain and more in particular
the case study. Indeed, it is possible to model some aspects strictly dependent
on domain knowledge, providing more consciousness of the context. One of the
metrics that can be generally adopted in all the applications is the time metric:
given two events ei and ej where their timestamps are, respectively, T (ei) =
ti, T (ei) = tj ∈ R then it is defined as:

mi,j = |ti − tj | (5)
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and it is easy to derive the properties of symmetry and the zero diagonal of M .
It should be generically adopted starting from the assumption that the events
that belong to the same time frame should be part of the same process instance.
However, this only assumption could not satisfy all the requirements of the
problem; for example, two separated components of a CPS could fail at the
same time for completely different reasons, generating events belonging to two
different process instances, but this metric is not able to detect this distinction
by itself. A possible solution, could be to adopt more than one metric to evaluate
different aspects of the cases and quantify their distances under different points
of view (i.e. lexical, topological..). Once a problem is formalized, one or more
matrices are generated and now every event is described in terms of distances by
the others events and identified by a row in every matrix. These will be the input
for the following operations. For the sake of simplicity, here we consider only one
matrixM , but in the following section, we will present the implementation taking
into account two different matrices obtained from two metrics.

The first operation we propose consists of using the proximity relations in M
to represent the events as points on q-dimensional Cartesian axis. We utilize the
Multidimensional Scaling (MDS) algorithm [6], which takes as input a number
of components q, and the matrix of distances M whose dimensions are n × n,
with q ≪ n. The MDS algorithm calculates the coordinates of the points in an
Rq space by minimizing a loss function that ensures the preservation of distances
between objects as much as possible. The aim of this operation is twofold: it sup-
ports visualization of the events where the distances between points in the scatter
plot correspond to the dissimilarities between the original objects, allowing the
domain expert to understand the proximity relation among events; it supports
the use of centroid-based clustering methods for the partitioning of events into
homogeneous groups. It is important to underline that in case of using more than
one metric, the MDS has to be performed on each resulting matrix, obtaining
q features for every transformed matrix and finally using all these features as
input for the following steps, as reported in the following section.

Every event is then identified by q coordinates in a Rq space:

MDS : Rn×n → Rn×q |M → MDS(M) (6)

Let B = MDS(M) where bi,j ∈ B. We can then assign a tuple of q values to
each event, as in Eq. 7.

ψ : E → Rq , ei → ψ(ei) = (bi,1, bi,2, . . . , bi,q) (7)

The dataset is now composed of a set of n tuples S = {ψ(e1), . . . , ψ(en)}
where ψ(ei) ∈ Rq. This reduced dataset serves as input to a clustering algorithm
that partitions the events into homogeneous groups, evaluating the distances
between events described by the q attributes provided by the previous MDS
step. K-means is chosen as the method for this clustering phase [12] because it
provides, as output, the partition of events and a set of centroids. The latter are a
useful synthesis of the data as they describe the average behavior of events in each
cluster. K-means requires as input the dataset and the number of clusters k we
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want to obtain, the output is a n dimensional vector of the label, one for each row
of the input data set, and the set of cluster centroids. Since K-means optimizes a
within-cluster heterogeneity criterion, the value of k is typically determined using
rules that evaluate within-cluster and/or between-cluster variability for various
values of k. Among these rules, the most common include the Elbow method [18],
the Average Silhouette method [16], and the Gap Statistic method [19]. Eq. 8
defines the function:

KM : Rn×q × N → Rn , (S, k) → KM(S, k) = (l1, l2, . . . , ln) (8)

The labels li represent for each event the values of the CaseID : the dataset
can now be processed by PM techniques.

C : E → Rq+1 , ei → C(ei) = (ψ(ei), li) (9)

4 Case study

The reliability of the proposed methodology for detecting correctly CaseID from
an unlabelled dataset was evaluated in a case study involving cyber-physical in-
frastructure activities. In detail, a monitoring infrastructure is analysed with the
support of Gematica3 company, which has developed solid expertise in complex
communication systems and Information Technology (IT) infrastructure man-
agement solutions in heterogeneous domains — e.g, railway, automotive, build-
ing management. Gematica has realized a test bed in their laboratories where
the data used in this paper has been collected.

In particular, by modelling a railway infrastructure for a simple plant, data
coming from trains, stations, waysides, and a control centre were collected into
a monitoring centre. In this simulated test bed, redundant network links inter-
connect the different devices, which exchange signals with each other and send
alerts to the centre by raising events. All the events are classified by a growing
severity: from Information (associated to the severity code 5) to High (associated
to the severity code 1). These levels are also mapped on three kinds of triggering
events: (1) fault events, which are associated with a severity code from 1 to 3; (2)
resolving events, whose severity code is equal to 4, which logs the clearing of an
error situation by the end of a maintenance action; and information events, asso-
ciated to severity code 5, which is limited to reporting non-fault-related events
worth to be logged. The dataset extracted comprises several rows, every of
which represents an event with its details: event ID, timestamp, event descrip-
tion, severity, IP of the device involved, and three attributes that topologically
locate the event within the infrastructure, as shown in Table 1.

In our preliminary tests, 56 fault events with high-level severity and 106
fault events with medium-level severity were considered. Each event involves a
device that is configured in a specific system topology, hierarchically structured

3 https://gematica.com/
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Table 1: An excerpt of the dataset.
id timestamp_event description_event severity_event Level1 Level2 Level3 device_id device_ip_address
320897 2023-05-09 11:47:59+02:00 Link Down FastEthernet0/5 2 1 342 538 3844 192.168.231.253
320898 2023-05-09 11:48:08+02:00 Device Down 2 1 342 538 3846 192.168.231.120
320903 2023-05-09 12:10:13+02:00 Link Down 2 2 345 542 3862 192.168.220.253

under three different levels, that specify where the device is located in the overall
infrastructure.

The CaseID to infer represents the identifier for all the fault events correlated
and generated from the same cause in a way that they could be assigned to the
same failure process. Therefore, we have: n = 162 events (E); m = 19 devices
(D); and k = 21 attributes (A). In detail, from the set of attributes, we selected
those useful in our methodology and PM application, as indicated in Table 1: the
topological features Level1, Level2, Level3, IP and time, i.e. timestamp converted
in second, were selected.

Successively, the metrics, necessary to quantify the distance between two
events, were calculated. The proposed methodology is a very general approach
that allows applying this formalism to different case studies in multiple domains,
giving high flexibility to the technique. The definition and calculation of these
metrics were suggested by the guidelines of domain experts. In our context, we
defined the metric following the approach proposed in [10]: we started from the
assumption that faults caused by the same root event should be “near” in terms
of time and semantics. The temporal distance was calculated as stated in Eq. 5,
as it is reasonable to assume that two temporally “close” events are related, but
this assumption is not sufficient as stated in the previous section 3. Therefore,
another metric was added: lexical distance. This metric is strictly dependent
on the context information because is defined by the functional and topological
dependencies among events related to the same system failure, suggested by the
knowledge of domain experts. The lexical distance was defined as follows: let
be subset A′ = {Level1, Level2, Level3, IP-Group} ⊆ A, it is possible to use the
function in Eq. 3 in the one in Eq. 10, for assigning to each device the values of
the attributes selected for the metric, such as:

L : D → R4

dj → L(dj) = (φLevel1(dj), φLevel2(dj), φLevel3(dj), φIP−Group(dj))
(10)

According to the Eq. 4 for all i, j ∈ {1, . . . , n}, we define

mi,j = d(L(R(ei)),L(R(ej))) (11)

where the function is computed as in Fig. 4. The lexical distance can vary from
0 (i.e., two events involving devices in the same IP-Group) to 4 (two events
occurred in different settings of the infrastructure).

After the metrics definition, it is possible to calculate the two distance matri-
ces Mt and Ml, in which every event is described by a row, in terms of distances
— respectively temporal and lexical — from the others. Starting from these
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non-euclidean distances, it is possible to assign to the events, coordinates in a
Rq space with q ≪ n whose Cartesian distances match that stored in the matrix,
as stated in the Eq. 7. To obtain this, the Eq. 6 is applied to the matrix Mt by
choosing qt = 5 and to the matrix Ml with ql = 2, obtaining acceptable results,
in terms of stress. Now, it is possible to identify every event with q = qt+ ql = 7
coordinates that locate itself in space and in time. After that, K-Means is per-
formed. The choice of the number of clusters has been performed according to
the Elbow rule applied to the Within-Cluster Sum of Squares for k = 2, . . . , 40.
Consistently with this criterion, we set k = 27. Scikit-learn 1.2.24 is used for the
K-Means algorithm.

Level1

φLevel1 (R(ei))==φLevel1 (R(ej))

Level2

φLevel2 (R(ei))==φLevel2 (R(ej))

Level3

φLevel3 (R(ei))==φLevel3 (R(ej))

IP-Group

φIP-GROUP (R(ei))==φIP-GROUP (R(ej))

TRUE TRUE

TRUE

FALSE

mi,j =4
FALSE

mi,j =3

FALSE

mi,j =2
FALSE

mi,j =1

(ei ,ej)

mi,j =0
TRUE

Fig. 4: Definition of the lexical distance between two events.

In order to assess the effectiveness of the proposed methodology and its ability
to accurately detect CaseIDs, an evaluation of its reliability was conducted.
Since the faults were simulated we were aware, supported by domain experts,
of the interconnection among the components so we can exactly reconstruct
the sequence of events oin each process instance, labelling and comparing the
cases with that inferred by the methodology. The performance of clustering
was evaluated in terms Silhouette coefficient [1] which is an internal clustering
validity index that evaluates cluster compactness and separability, and Rand
Index, Adjusted Rand Index, Precision and Recall, which are external clustering
validity indexes based on comparing the obtained partition with the a-priori one.
Precision and recall were calculated, as proposed in [2], by defining True Positive
(TP), False Positive (FP), False Negative (FN) as follow:

– TP is the number of events in which the CaseID predicted matches with the
true label indicated by the experts;

– FP is the number of events in which the CaseID predicted does not match
with the true label indicated by the experts because the event should belong
to another case;

4 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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– FN is the number of events in which the CaseID does not exist in the labelled
log obtained applying the proposed approach but exists in the one labelled
by the experts.

The results are reported in the table 2. These show the reliability of the proposed
methodology, achieving to detect correctly CaseID from an unlabelled event log
with a precision of about 81%.

Table 2: Evaluation metrics obtained with the proposed methodology.
Rand Index Adjusted Rand Index Silhouette Precision Recall

0.973 0.649 0.738 81.0 % 88.1 %

5 Conclusions

In recent years, the use of PM in day-to-day business process management has
increased significantly. The present paper moves from the necessity to improve
the case detection in the unlabelled event log, which is a precondition to the
application of PM algorithms.

This work proposes an approach based on the analysis of temporal and se-
mantic features, which are considered to aggregate faulty events. The K-Means
clustering technique is used to group together similar event log entries. The ap-
proach has been tested on a railway infrastructure monitoring system, equipped
in the laboratories of Gematica company.

The proposed methodology was tested by evaluating unlabelled event logs
of the infrastructure monitoring system, achieving the expected results. It is
important to underline, that in this preliminary phase, simulated data were
adopted in experiments. In prospect, we will explore the performance of the
proposed methodology by using real data with a more homogeneous distribution
in time and in the types of faults involved. Moreover, in a real context, the
metrics calculated could be improved by considering other context information,
such as, for example, functional and non-functional dependence between devices,
improving the expressive power of such methodology.
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